

GRB and All-Sky Monitor Experiment

Marco Feroci

for Lorenzo Amati

(INAF, Italy) on behalf of the GAME collaboration

Science Drivers

- The transient and variable X-ray sky: simultaneous monitoring in 1-50 keV, over a large fraction of the sky, with ~1 arcmin imaging accuracy and all-sky coverage
- Gamma-Ray Bursts:
 - detection, \sim arcmin localization and spectroscopy of the prompt emission, down to 1 keV

The variable X-ray sky, at all scales

X-ray All-Sky Monitoring

- The X-ray sky is highly variable and transient. Discovery of new classes of sources is made possible by All Sky Monitoring in the most suitable energy range, soft X-rays. Example also from the recent past are outstanding, e.g.: magnetars, jetted tidal disruption events, ...
- Long-term, continuous monitoring of Galactic sources allows the study of source/class properties unaccessible to narrow field instruments: state changes in black hole candidates, bursting and super-bursting behaviour, orbital and superorbital periods, period derivatives, low frequency QPOs,
- Multi-messenger (photons, gravitational waves, neutrinos), Timedomain Astronomy in the 2020's, when large facilities like SKA, LSST, E-ELT, CTA, A-LIGO/Virgo, ... will become operational, require an all sky monitor in the X-ray domain.

Continuous vs multiplexed monitoring

Flux data from Vela X-1, as observed from Swift/BAT (black points) and AGILE/SuperAGILE (red points):

sparse monitoring can miss the most extreme and interesting states of sources

Wide-field simultaneous monitoring

SuperAGILE data (Feroci et al. 2010)

Gamma Ray Bursts: prompt emission in X-rays

- Despite the huge advances occurred in the latest years, the GRB phenomenon is still far from understood: going back to the study of the Prompt Emission is needed.
- * <u>An energy band extending down to</u> <u>soft X-rays is needed.</u>
- Measurements down to a few keV were provided in the past by BeppoSAX, but a larger sample with higher sensitivity and energy resolution is urgently needed.
- Current GRB experiments are limited to prompt emission > ~10 keV; future (SVOM, CALET/GBM, UFFO) > ~ 5-8 keV

Why prompt emission at soft X-rays?

GRB Physics at soft X-rays:

- emission models and thermal components
- absorption features (redshift, circumburst matter)

1 keV-1)

ò

- high redshift GRBs
- > X-ray flashes
- Iocalization and trigger to multimessenger observatories (e.g., GWs)

Wide-field X-ray monitors: context

Mission	Experiment	Energy band	Field of	GRB	Max. eff.	Energy	#GRB /	Nominal
		(keV)	view (sr)	Location	area	resolution	year	operation /
				accuracy	(cm²)	(keV)		launch
CGRO	BATSE	25 - 2000	9	> 3°	2000	15@100 keV	300	1991 - 2000
BeppoSAX	WFC	2 – 28	0.26	3'– 5'	180	1.5@6 keV	15	1996 - 2002
	GRBM	40 - 700	6	> 10°	700	20@100 keV	200	
HETE-2	WXM	2 - 25	0.8	-	70	1.8@6 keV	15	2000 - 2006
	FREGATE	7 - 400	1.74	-	40	15@100 keV	70	
Swift	BAT	15 - 150	1.4	3'	2600	3@60 keV	120	2004 -
WIND	Konus	15 - 10000	4π	-	250	15@100 keV	250	
Fermi	GBM	8 - 30000	9	> 3°	300	15@100 keV	250	2008 -
INTEGRAL	ISGRI	20 - 200	0.1	1.5	1300	3@60keV	10	2003 -
MAXI	GSC	2 - 30	1.5°x160°	0.1°	5350	<u>1@5.9</u> keV	5	2009-
	SSC	0.5 - 12	1.5ºx90º	0.10	200	<u>0.15@5.9</u> keV	2	
GAME	XRM	1 - 50	~3 (FC)	1'	550	0.2@3 keV	200	2021-

The proposed payload for GAME

Science Requirements:

- Arcmin-imaging in the 1-50 keV energy range
- mCrab-level daily sensitivity
- Few-steradian field of view, all sky coverage
- Good spectral resolution (<500 eV @6 keV)</p>
- Prompt localization & transmission of transient coordinates to the ground

Payload requirements:

➢Imaging over a wide field of view in 1-50 keV: coded masks

Fine position resolution in 1-50 keV: Silicon detectors

≻High efficiency in 1-50 keV: Silicon detectors

- >Good spectral resolution: Silicon Drift Detectors
- Fast-communication to ground: VHF transmission

An X-ray Monitor based on Silicon Drift Detectors

Silicon Drift Detectors, heritage of the LHC/Alice experiment at CERN, with high readiness and excellent performance (energy resolution <300 eV, low energy threshold < 2 keV, time resolution < 10µs) can be used to build large area detectors.

Instrument configuration

The proposed SDD detector has asymmetric position resolution: $\leq 100 \mu m$ in one direction and $\sim 2-3 mm$ in the orthogonal direction.

⇒ Asymmetric 2D coded mask

 \Rightarrow 2 orthogonal cameras always looking at the same FoV to guarantee arcmin imaging in both coordinates.

Based on previous studies (e.g., LOFT/WFM) this type of configuration can be realized with ~10 kg per camera.

Mission		Payload			
Orbit	Low-Earth, equatorial	XRM Cameras	4-6		
	(90')	Energy range	1-50 keV		
Pointing	3-axis stabilized, zenith-	Energy res.	300 eV (FWHM, 6keV)		
	pointea	Field of View	~2-4 sr		
Accuracy	1 arcmin	Source Location	1 arcmin		
TM rate	~200 kbps (average)	Mass (CBE)	~40-60 ka		
		Power (CBE)	~60-90 W		

Sky coverage (every orbit)

Anticipated performance: ASM

Simulations courtesy of the LOFT Team

Anticipated performance: GRBs

GAME: Enhanced Science

Including a Soft Gamma-ray Spectrometer would extend the energy range up to 10 MeV, offering:

- ✓ Wide-band spectroscopy of the prompt emission of GRBs from ~1 keV up to ~10 MeV + arcmin localization: GRB physics and cosmology (E_{peak}-E_{iso}); higher efficiency for short-hard GRBs (trigger and position for gravitational wave counterparts)
- ✓ Hard tails of Galactic and Extragalactic X-ray sources

GAME: Enhanced Model Payload Concept

Mission		Payload	
Orbit	Low-Earth, equatorial	XRM Cameras	4-6
Pointing	3-axis stabilized, zenith-pointed	Mass (CBE)	~40-60 kg + ~40-80 kg
Accuracy	1 arcmin	Power (CBE)	~60-90 W + ~15-30 kg
Data rate	~200 kbps + ~20-40 kbps		

Conclusions

- GAME aims at exploiting the unique combination of large area, broad FOV, ~arcmin source location accuracy, 300 eV energy resolution, and energy band (~1-50 keV) of the solid technology of SDD-based coded mask cameras to perform:
- all-sky monitoring in 1 50 keV, providing triggering and accurate location of transient sources and the study of the spectral-timing variability of several classes of X-ray sources on time scales from s to years;
- address some of the main open issues in the GRB field by means of sensitive measurements of the prompt emission down to 1 keV and arcminute localization
- The payload for the GAME mission is compatible with the boundary conditions set in the ESA-CAS call for ideas.