Joint Scientific Space Mission CAS-ESA, 1st workshop

Searching for habitable planets Bright Star Survey Telescopes (BSST)

Ji-Lin Zhou, Lifang Wang, Hui Zhang, Xue-Feng Wu, Hui-Gen Liu, Song-Feng Kou, Guo-Ming Wang

(Nanjing University; Purple Mountain Observatory; Nanjing Institute of Astronomical Optics and Technology)

(Email: zhoujl@nju.edu.cn)

2014.2.25, Chengdu, China

Finding habitable exoplanets is one of the most important goals in Human history.

- With radial velocity method, there are > 800 exoplanets confirmed (exoplanets.org)
- None of them are confirmed to habitable.

Achievement of Kepler Mission

Search for HP with a photometry of 0.01%, it can only achieved by Space Missions.

MAN LING DE LEVEN

here are similar projects proposed after Kepler:

Credit: PLATO team

Lauch 2017, http://web.mit.edu/

TESS : a full sky survey, aiming at mostly short period orbits Location: Earth lunar 2:1 resonance orbits

Planed at: 2020-2022年

Orbit: Solar-Earth L2

2250°X2=4500°

In its nominal science operation phase, PLATO 2.0's current baseline observing strategy combines:

- Long-duration Observation Phases, consisting of continuous observations for two sky pointings, lasting a minimum of 2 years with a maximum of 3 years for the first pointing, and 2 years coverage for the second pointing.
- Step-and-Stare Operation Phases, consisting of shorter-period observations of several sky fields which will last 1-2 years total, depending on the duration of the long duration phases. Sky fields in this phase will be observed for at least 2 months, up to a maximum of 5 months.

BSST(Bright Stars Survey Telescopes)

Main Payload : 10cmx10 Telescopes , FOV 15°x15°X4=1350°

• Orbit: NEO >200km

Total FOV: 15°X90°X6 =8100 Square Degree

Sky Coverage: 1350°x6x2=16200°

Figure 2: The observed regions (~16,200 square degrees, top and bottom bright area) of BSST as compared with the 3-year observation area of PLATO 2.0 (two pink squares) and Kepler.

Table 1: Predicted No. of planet candidates detected by BSST.

Vmag	Nstar	Nstar (G,K,M)	Precision	Predicted No. of planet candidates by BSST			
				<1.25Re	1.25-2Re	2-6Re	>6Re
6.5-8.0	14,000	7,600	0.01%	48	115	180	39
8.0-10.0	108,000	56,000	0.05%	0	880	1440	312
10.0-12.0	680,000	>28,000	0.5%	0	0	8800	1,900
Totally	800,000	90,000	-	48	995	10,420	2,251

A comparison of TESS, PLATO, BSST

	TESS (Long)	TESS (Short)	PLATO (Long)	PLATO (Short)	BSST (Long)	BSST (短模式)
Sky coverage	3280 ⁰	38,000°	4500°	15750°	16200°	
Orbit period	<2/3 year	month	1year	1 month	1year	
0.01% Precision	4.0-7.5 Mag	4.0-7.5 Mag	4.0-11.0 Mag	4.0-11.0 Mag	6.5- 8.0Mag	
0.1% Precision	7.5-12 Mag	7.5-12 Mag	11.0-16.0 Mag	11.0-16.0 mag	8.0- 12Mag	
Expected Terrestrial Planets	20(may be <2/3yr)		Tota	al 60	48 (mostly HP) (10 times less expensive)	
Launch time/Life time	2017 (USA)	4years	2020- 2022(ESA)	6-8years	2020? (China+E SA?)	3 years

Scientific aim of BSST

- 1. Searching for exoplanet candidates: to searching for >10,000 candidates, ~48 Terrestrial plants, mostly in Habitable zone, and understanding planets system with precise stellar parameters;
- Stellar seismology: >800,000 star's 3 year continues high-precision light curves; Variable stars;
- 3. Transient sources: Gammy Ray busts, supernova, …

Heritage from previous studies

Wang et al. 2014

- NIATO has constructed 10cmx4 CSTAR, put in Dome A, Antarctic, and it worked > 4 years---Ground techniques are OK.
- With CSTAR 2008's data, NJU obtained 10 planet candidates (Wang et al. ApJS, accepted) ---Software is ready.

Possible collaborators:

- Techniques: for space telescopes,
- Budget: RMB ~10M is enough for Payload.
- Possible collaborators in Europe: PLATO 2.0 group & Dome C exoplanet team
- Near Infrared Camera: Hot Jupiter's 2nd transit: Temperature => composition----Unique Mission!

Emission spectroscopy (day side, secondary transit)

谢谢!

Thank you ! (zhoujl@nju.edu.cn)

