An L5 Mission Concept for Compelling New Space Weather Science

> RESCO (China) REal-time Sun-earth Connections Observatory

INSTANT (Europe) INvestigation of Solar-Terrestrial Associated Natural Threats

Ying Liu (National Space Science Center, CAS)

Benoit Lavraud, Richard Harrison, Jackie Davies, William Liu, Yong Liu, Milan Maksimovic, Jean-Claude Vial, Frederic Auchere, Nat Gopalswamy, Stuart Bale, George Parks

Overview: CMEs and space weather

• Coronal mass ejections (CMEs) are large expulsions of plasma and magnetic field from the solar corona and drivers of major space weather effects;

• Estimated cost of an extreme CME could reach up to a trillion dollars with a potential recovery time of 4 - 10 years.

Liu et al., Nature Comm., 2014

Overview: Motivation

• A number of spacecraft making routine remote-sensing and in-situ observations (such as SOHO, Wind and ACE) are already at L1, and are expected to operate there in the next 5-10 (or more) years;

• SDO, although not at L1, has a function similar to SOHO, and its extraordinary capability cannot be exceeded by a similar spacecraft near Earth;

• We must go away from the Sun-Earth line to cover the whole Sun-Earth space (STEREO).

Mission concept: RESCO

REal-time Sun-earth Connections Observatory

Liu et al., ApJ, 2010b

• A dedicated spacecraft at L5 to make combined remote-sensing and in-situ observations of the whole Sun-Earth space.

Primary objective:

Understand nature and Sun-to-Earth propagation of solar wind transients.

- Suggested payload:
- EUV imager (15 kg, optional);
- Coronagraph (20 kg);
- Heliospheric imager (15 kg);
- Magnetometer (3 kg);
- Solar wind plasma detector (5 kg).

Scientific objectives

• Investigate the Sun-to-Earth propagation of solar wind transients (including CMEs and CIRs) with unprecedented high-cadence, wide-angle imaging observations;

• Understand the nature of solar wind transients by connecting imaging observations with in-situ measurements;

• Determine the magnetic field magnitude and orientation of Earth-directed CMEs for the first time;

• Explore the advantages for space weather forecasting provided by the L5/L4 vantage points.

Sun-to-Earth propagation of transients

• Understand the physical mechanisms that govern the Sun-to-Earth propagation of solar wind transients;

• Understand how solar wind transients interact with the ambient corona and heliosphere;

• Understand how solar wind transients interact with other coronal and solar wind structures;

• Develop a practical capability for space weather forecasting.

Nature of solar wind transients

- Investigate how wide-angle imaging observations connect with in-situ signatures;
- Disentangle the structures of solar wind transients including CMEs and CIRs;
- Understand the physical nature of solar wind transients.

First ever capability of determining CME B field

• CME magnetic field is a key element in space weather but so far elusive;

• Novel Lyman-alpha measurements to determine the magnetic field magnitude and orientation through the Hanle effect;

• The L5 location is ideal for early determination of magnetic structure of Earth-directed CMEs.

Space weather advantages at L5/L4

Advance warning of active regions and coronal holes that will soon rotate to Earth view

Suggested payload

Science objective	Required measurements
Investigate the Sun-to-Earth propagation of solar wind transients	wide-angle white light, EUV (optional)
Understand the nature of solar wind transients by connecting imaging observations with in-situ measurements	wide-angle white light, in situ plasma and magnetic field
Determine the magnetic field magnitude and orientation of Earth-directed CMEs for the first time	Lyman-alpha polarization measurements
Explore the advantages for space weather forecasting provided by the L5/L4 vantage points	wide-angle white light, in situ plasma and magnetic field, EUV (optional)

Suggested payload

Instrument	Mass (kg)	Power (W)
EUV Imager (optional)	15	15
Lyman-alpha Coronagraph	20	15
Heliospheric Imager	15	15
Solar Wind Plasma Detector	5	3
Fluxgate Magnetometer	3	2
Total	58	50

• This concept can satisfy the technical constraints (spacecraft mass ≤ 250 kg, payload mass ≤ 60 kg and power ~ 50 W);

• It requires a propulsion module to station the spacecraft at L5, and the launcher is envisaged as Long March 2 or Soyuz.

Strong heritage from STEREO

- STEREO, launched in Oct 26, 2006, is twin spacecraft off the Sun-Earth line.
- The two spacecraft drift away from Earth, so STEREO doesn't provide a fixed vantage point.
- We have been on the STEREO team for years and familiar with both the science and instrumentation.
- Four instrument packages:
- SECCHI (image a CME from its birth in the corona all the way to the Earth);
- IMPACT (measure in situ particles and magnetic field);
- PLASTIC (measure in situ solar wind plasma and minor ions);
- SWAVES (measure radio emissions).

Similar concepts in Europe and US

• An L5 mission is a key proposal in US Decadal Survey;

• The mission concept was studied at the Mission Design Laboratory, NASA GSFC;

• A straw man L5 mission was formulated, EASCO (Gopalswamy et al. 2011);

• Also see INSTANT poster by Benoit Lavraud.

Instrument	Mass (kg)	Power (W)	Data Rate (kbps)
MADI	15	60	7
ICIE	10	8	30
WCOR	25	30	15
HI	10	15	5
HXI	6	5	2
UVOS	30	30	20
LRT	13	15	2
SWPI	10	5	3
MAG	3	3	3
EPD	16	23	3
Total	138	194	90

Earth-Affecting Solar Causes Observatory (EASCO)

Summary

• L5 has various advantages, which can greatly advance space weather science and forecasting. Many countries are pushing for an L5 mission, and China/ESA can the first!

• The concept we propose will address compelling new science and develop practical space weather capabilities under the technical and programmatic constraints.

• As a crucial and popular idea, the L5 concept would allow wide collaborations between CAS and ESA on both science and instrumentation in solar physics, space physics and space weather.

Thank you!