L5 mission concept for the ESA-China S2 small mission opportunity

INSTANT

INvestigation of Solar-Terrestrial Activity aNd Transients

The team

Lavraud B¹ (Europe), Liu Y² (China)

Harrison RA³, Liu W², Auchère F⁴, Gan W⁵, Lamy P⁶, Xia L⁷, Zhang H⁸, Eastwood JP⁹, Kong L², Wang J², Wimmer-Schweingruber R¹⁰, Zong Q¹¹, Soucek J¹², Prech L¹³, Rochus P¹⁴, Rouillard A¹, Davies JA³, Vial JC⁴, Maksimovic M¹⁵, Temmer M¹⁶, Escoubet CP¹⁷, Kilpua EK¹⁸, Tappin J³, Vainio R¹⁹, Savani N²⁰, Gopalswamy N²¹, Bale S²², Li G²³, Howard T²⁴, DeForest C²⁴, Segura K¹ and the broader INSTANT science team

¹IRAP/CNRS/Université de Toulouse, France
³Rutherford Appleton Laboratory, Didcot, UK
⁵Purple Mountain Observatory, Nanjing, China
⁷Shandong University, Weihai, China
⁹Imperial College, London, UK
¹¹Peking University, Beijing, China
¹³Charles University, Prague, Czeck Rep.
¹⁵Observatoire de Paris, Meudon, France
¹⁷European Space Agency, The Netherlands
¹⁹University of Turku, Finland
²¹NASA Goddard Space Flight Center, USA
²³University of Alabama, Huntsville, USA

²National Space Science Center, Beijing, China
⁴Institut d'Astrophysique Spatiale, Orsay, France
⁶Observatoire de Marseille, France
⁸Changchun Institute of Optics, China
¹⁰Christian Albrechts University, Kiel, Germany
¹²Institute of Atmos. Phys., Prague, Czeck Rep.
¹⁴Centre Spatial de Liège, Belgium
¹⁶University of Graz, Austria
¹⁸University of Helsinki, Finland
²⁰Naval Research Laboratory, Washington, USA
²²Space Sciences Laboratory, Berkeley, USA
²⁴Southwest Research Institute, Boulder, USA

Motivation: the science of Sun-Earth connection

A chain of fundamental processes

- Dynamo processes;
- Corona magnetic structure;
- Solar wind acceleration;
- Initiation of CMEs;
- CMEs propagation and evolution in heliosphere;
- Shocks, turbulence, magnetic reconnection;
- Solar energetic particles;
- Geomagnetic storms...

Fundamental plasma physics processes at hand

Motivation: the impacts of Sun-Earth connection

Strong economic and societal impact: Space Weather as bonus

Properties and processes that influence coronal dynamics and geo-effectiveness

> Lagrangian L1 point

Anti-parallel fields = more geo-effective

Among all unknowns, coronal magnetic field magnitude and orientation is most elusive

→ Key properties and processes are set
 (1) at the Sun,
 (2) during propagation, and
 (3) upon coupling with Earth

Limitations of Lagrangian L1 point observations

SOHO LASCO

L1 (i.e, Earth) coronagraph observations

Halo CME

Imaging: only very rough idea of CME shape, trajectory, speed & strength In situ: optimal knowledge of geo-effective parameters, but late...

→ Position off-Sun-Earth line is essential Early properties of Earth-directed CMEs, continuous tracking, multi-point and SEP measurements, & impact at Earth

Limitations of past and future off-Sun-Earth line missions

Limitations of STEREO:

- During solar minimum (low CME statistics)
- Drifted through L5: no continuous "Sun-Earth" vantage point

Limitations of Solar Orbiter and Solar Probe +:

- Solar Orbiter imagers off at aphelion
- No broader context orbits rarely in proper location for study of Sun-Earth connections

INSTANT will provide:

- → <u>Novel</u> coronal/heliospheric imaging and *in situ* data, during solar maximum, at a key off-Sun-earth line vantage point
- Synergy with observations at Earth and inner heliosphere missions (Solar Orbiter, Solar Probe + and Bepi-Colombo)
- → Unprecedented space weather capabilities as bonus

Solar Orbiter Solar Probe+ INSTANT

INSTANT Science objectives

The proposed mission will tackle the following key objectives:

What is the magnetic field magnitude and topology in the corona?
 How does the magnetic field reconfigure itself during CME eruptions?
 How do CMEs accelerate and interact in the interplanetary medium?
 What are the sources of and links between slow and fast solar winds?
 Where do shocks form and how do they accelerate particles?

It will further provide the following crucial space weather capabilities: 6. 3-days advance knowledge of CIR properties that reach Earth 7. Twelve hours to 2 days advance warning of Earth-directed CMEs 8. Twelve hours to 2 days advance warning of CME-driven SEPs 9. *Unprecedented ability* to reconstruct the magnetic field magnitude and orientation of Earth-bound CMEs early in the corona

1. What is the magnetic field magnitude and topology in the corona?

Dynamics is driven by magnetic fields in the low-beta corona

But elusive owing to the lack of proper measurements of coronal magnetic field

(except at photosphere using Zeeman effect and low corona with Hanle effect from ground)

Sub-objectives:

1.1 Measure of the radial and latitudinal profiles of horizontal coronal magnetic field

1.2 Direct coronal magnetic field data to reconstruct coronal topology

1.3. Distribution of coronal Alfvén speed for reconnection and acceleration processes

2. How does the magnetic field reconfigure itself during CME eruptions?

Coronal magnetic fields are also critical to constrain and test CME initiation models

But CME magnetic field, and its geoeffective Bz component in particular, remains elusive to observations

Sub-objectives:

2.1 Direct measurement of horizontal coronal magnetic field above source active region

2.2. Constraints on coronal magnetic field reconfiguration during CME eruption

2.3. Benchmarking of actual CME properties, in combination with multipoint in situ data at Earth and elsewhere

3. How do CMEs accelerate and interact in the interplanetary medium?

CME flux rope formation induces large magnetic forces and pressure gradients

Yet CME dynamics and evolution in corona and solar wind are poorly understood owing to limited observations

<u>Sub-objectives:</u>

3.1 Simultaneous measurement of CME acceleration and magnetic field down to 1.15 Rs

3.2. Disentangling of projection effects to accurately determine CME dynamics and interaction in the inner heliosphere

3.3. Benchmarking of CME kinematics with multipoint in situ data at Earth and elsewhere

Gallagher et al., 2001

4. What are the sources of and links between slow and fast solar winds?

The processes that produce the slow and fast winds remain highly debated.

Combined plasma and magnetic field imaging in the upper corona will provide unprecedented diagnostics

Sub-objectives:

4.1 Measure plasma and magnetic field profiles in the regions of slow and fast wind acceleration

4.2. Observe dynamic magnetic field reconfigurations (e.g., reconnection-driven)

4.3. Determine where the transient slow wind originates and how it evolves in the heliosphere

Track density speed and trajectory of blobs to SolO and SP+

HI field of view

5. Where do shocks form and how do they accelerate particles?

The formation of shocks is critical to understanding solar energetic particle acceleration and impact in helliosphere

Yet their early formation is elusive, owing to a lack of appropriate measurements

<u>Sub-objectives:</u>

5.1 Early detection and determination of shock properties (B-field) in corona

5.2. Tracking and reconstruction of shocks in the heliosphere

5.3. Determine the spatial and temporal properties of solar energetic particle (SEP) acceleration for Earth-bound CMEs

shock formation

SEP spectral variability

Requirements for objectives 1 and 2

- → What is the magnetic field magnitude and topology in the corona?
 → How does the magnetic field reconfigure itself during CME eruptions?
 - Novel Lyman-α measurements to determine line-of-sight magnetic field through the <u>Hanle</u> effect
 - Measurement in low corona (1.15 4 Rs) for reconstruction of magnetic field topology
 - Off-Sun-Earth line location for early determination of magnetic structure of Earth-bound CME and comparison with <u>in situ data</u> in heliosphere

→ Also key measurements to address objectives 3, 5, 7, 9

Requirements for objective 3

 \rightarrow How do CMEs accelerate and interact in the interplanetary medium?

 \rightarrow What are the sources of and links between slow and fast solar winds?

Multipoint measurements of B-field, protons and suprathermals Lyman-α and white light imaging of corona and heliosphere Off-Sun-Earth line location for advance measurement of Earth-bound corotating structures

→ Also key measurements to address objectives 3, 5, 6, 8

Requirements for objective 5

 \rightarrow Where do shocks form and how do they accelerate particles?

Early imaging of shock formation in low corona (up to 4 Rs)
Magnetic field and density imaging for shock properties
Multipoint, off-Sun-Earth line measurement of energetic particles

→ Key measurements to address objectives 3, 4, 5, 6, 8

Mission profile: orbital requirements

•

•

•

 \bullet

- Observation off-Sun-Earth line is a key for innovative science of Earth-directed CMEs
 - Towards L5 rather than L4 (CIRs and SEPs)
 - Science operations start after commissioning (~few months)
 - Earth-directed CMEs can be studied after S/C has drifted by ~ 20° towards L5
 - L5 insertion after ~2 years operation

3 years operation sufficient to address key science objectives Launch in 2021 allows synergy with Solar Orb., SP+ and Bepi-C

Mission profile: launcher, platform, propulsion

- Launcher should allow exit to L5
 Launch with Long-March 2
 - Spacecraft mass max. 300 kg as per boundary conditions

European platform (Myriad Ev., Proba, else)

- Additional propulsion module for:
 - exit to L5, and
 - insertion at L5

Classic or electric propulsion (Smart-1) may be considered

→ Exact orbit and propulsion details are still under study

Payload: innovative coronal imaging

1/2 wave plate

MAGIC: MAGnetic Imaging Coronagraph

- Novel Lyman-α measurements to determine line-of-sight magnetic field component through the <u>Hanle</u> effect
- High cadence (5-7 min) measurement in low corona (1.15–4 Rs) for reconstruction of magnetic field topology
- White light for electron density estimates
- Off-Sun-Earth line for early determination of magnetic structure of Earth-bound CME and comparison with *in situ* data

Heritage: R&T, SOHO, Solar Orb., ground, ...

TRL 6+

Payload: new 'polarized' heliospheric imagers

HI: Heliospheric Imagers

- Wide angle (2.5 60°) white light imagers to track CME and CIR interactions in heliosphere
- Polarization measurements
 for accurate trajectory
- Off-Sun-Earth line for early determination of trajectory of Earth-bound CME and comparison with *in situ* data in heliosphere

Heritage: R&T, STEREO, SOHO

TRL 9

Howard et al. [2013]

Payload: in situ instruments

In situ, off-Sun-Earth line (towards L5) measurement of B-field and thermal protons for CMEs and corotating structures

 1 AU (towards L5) measurement of energetic particles for direct detection and study of SEPs

MAG: Flux-gate Magnetometer

PAS: Proton and Alpha Sensor

HEPS: High energy Particle Sensors (e-/p+ and heavies in 10s keV – 10s MeV)

Heritage: Cluster, Chang'E, Solar Orb...

TRLs 9

Payload budgets and related objectives

All instruments have TRL 6 to 9

NAME	INSTRUMENT TYPE	MASS (kg)	POWER (W)	SCIENCE OBJECTIVES
MAGIC	Visible light and Lyman-α coronagraph	26	20	1, 2, 3, 5, 7, 9
HI	White light polarized heliospheric imagers	16	16	3, 4, 5, 7
MAG	Magnetometer	3	4	3, 4, 6
PAS	Ion sensor	4	4	3, 4, 6
HEPS	High Energy Particle Sensor	2	6	4, 5, 8
DPU	Data Processing Unit	3	5	
TOTAL		54	55	

The mission and payload satisfy the technical constraints S/C mass \leq 300 kg, payload mass \leq 60 kg and power \leq 65 W

Payload telemetry and hardware teams

NAME	INSTRUMENT TYPE	TELEMETRY kbits/s	HARDWARE CONTRIBUTORS
MAGIC	Visible light and Lyman-α coronagraph	70	IAS (France) Nanjing U. (China) NSSC (China)
HI	White light polarized heliospheric imagers	4	RAL (UK) Shandong (China) Changchun (China)
MAG	Magnetometer	2	NSSC (China) Imperial C. (UK)
PAS	Ion sensor	2	NSSC (China) IRAP (France)
HEPS	High Energy Particle Sensor	2	U. Kiel (Germany) NSSC (China)
DPU	Data Processing Unit		IAP&CU (Czech R.) NSSC (China)
TOTAL		80	

Spacecraft design and payload

- Based on existing or in development micro-satellite bus
 - Myriad Evolution as a baseline (up to 300 kg)
- 3-axis stabilized
- Additional propulsion module might be required for L5 orbit insertion

Payload fields of view

Telemetry requirements

The telecommunication subsystem is a key factor:

- 6.5 Gbits to be downlinked daily (preferred in X and/or Ka band)
- Ground antennas: 10 16 24 h daily contact scenarios studied
- 1m High Gain Antenna and transponder with < 40W RF assumed
 → Combined ESTRACK / Chinese DSN is sufficient

Ground Segment

DSN : Deep Space Network BACC : Beijing Aerospace Command and Control Center ESTRACK : ESA Tracking Station Network ESOC : European Space Operation Center ISOC : INSTANT Science Operation Center ISC : INSTANT Scientific Community (Institution, University...)

Summary of mission key elements

We place ourselves within the boundary conditions:

- S-class mission with 50 M€ ESA + equivalent by China
- Additional contribution to payload by national agencies
- Spacecraft mass 300 kg + possibly propulsion module
- 60 kg/65 W for payload

The proposed approach to shared contribution is:

- Launch by China (Long March)
- Platform by ESA (Myriad Evol., Proba, SSTL, ...)
- Payload shared by ESA member states and China
- Ground segment shared by ESA and China

Conclusions

Innovative concept that tackles compelling solar and heliospheric science objectives, and space weather as bonus, through:

→ unique measurements: Lyman-α and polarized HI
 → view from L5 for system-wide science
 → launch at Solar Maximum (2021)
 → synergy/timeliness with SolO and SP+

 \rightarrow large, supportive communities in EU – China (and US)

The mission proposed falls into the S-class constraints

All countries/space agencies involved in space physics are currently designing and pushing for an L5 mission (INSTANT, RESCO, EASCO, HAGRID, 'KuaFu', etc.)