Gravity gradiometry for fundamental physics, planetary science and Earth observation --Heritage from LISA Pathfinder

G. Heinzel, Yun-Kau Lau (刘润球)

Max Planck Institute for Gravitational Physics (AEI), Hannover, Germany Institute of Appl. Maths, Chinese Academy of Sciences, Beijing

On behalf of the eLISA and CAS GW consortium

The team

Wenrui Hu¹, Jun Luo², Yueliang Wu³, Lisheng Chen⁴, Jin Gang¹, Zhongwen Hu⁵, Congfeng Qiao⁶, Qi Kang¹, Yun Kau Lau⁷, Hsien-chi Yeh², Zhiyi Wei⁸, Mingsheng Zhan⁴, Yuanzhong Zhang³, Zebing Zhou², Yongtian Zhu⁵, Zhenlong Zou⁹.

¹ National Microgravity Laboratory, Institute of Mechanics, CAS, Beijing.

²Huazhong University of Science and Technology, Wuhan.
³Kavli Institute for Theoretical Physics, State Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, CAS Beijing.
⁴Wuhan Institute of Physics and Mathematics, CAS, Wuhan.
⁵ Nanjing Institute of ⁵Astronomical Optics and Technology, CAS, Nanjing.

⁶ University of the Chinese Academy of Sciences, Beijing.⁷Institute of appl. maths, CAS, Beijing

⁸The Institute of Physics (IOP), CAS, Beijing.

⁹National Astronomical Observatories, CAS, Beijing.

K. Danzmann^a, R. Dolesi^b, G. Heinzel^a, S. Vitale^b, W. J. Weber^b

^aMax Planck Institute for Gravitational Physics Hannover, Germany^bDipartimento di Fisica, and INFN, Trento, Italy.

Ongoing Collaboration since 2006 between eLISA consortium and CAS GW consortium

- Accelerometer and weak force measurement development at Wuhan and Trento
- Interferometry and phase measurement developments in Beijing (CAS) and Wuhan collaborating with AEI Hannover
- Joint studies of laser interferometry for gravitational wave detection (LISA) and satellite geodesy
- Joint training of graduate students:
 First graduation at Hannover in April 2014.
- China Germany exchange jointly funded by DFG and NSFC (~15 visits each from both sides only in this program)

Realising free falling test particles in space

Free falling particle--

- a particle subject only to gravitational force
- pairs of such "geodesic references" can detect tidal acceleration from gravity gradients of planets, gravitational waves, GR effects

- Test masses also used as mirror
- Even in space there are many disturbances: Magnetic fields, solar wind, radiation, ...
- The spacecraft shields the TM
- Distance between TM and S/C must be measured and controlled

Drag-Free Control

- Separation S/C TM is monitored with capacitive sensor or laser interferometer
- The S/C follows the test mass by actuating thrusters and torquers
- Problems: many degrees of freedom, complicated dynamics, noise
- Has been realized already, e.g. in GOCE
- Yields optimal disturbance suppression at TM

- Separation S/C TM is monitored with capacitive sensor or laser interferometer
- The test mass is pushed back to the center of the housing by electrostatic forces
- The necessary feedback force is recorded and represents the non-gravitational force, which can be subtracted in data processing
- Simpler than drag free but less disturbance reduction at the test mass

LISA Pathfinder

- Technology demonstrator for gravitational wave missions LISA/eLISA/NGO (ESA L3 theme)
- Launch 2015 with VEGA from Kourou

LISA Pathfinder: Einstein's Geodesic Explorer (2015)

- Compress single eLISA arm to 40 cm inside 1 spacecraft
- Drag-free following TM1, low-frequency suspension of TM2
- Measure differential TM acceleration
- Laser interferometric sensing (10 pm/VHz) along sensitive axis
- Modest capacitive sensing (3 nm/VHz) in other axes
- One-axis gravity gradiometer with 10 fm s⁻²/VHz resolution at 1 mHz

Gravity gradiometry

- Pioneered by GOCE (2009-2013), using electrostatic gradiometer by ONERA
- Orders of magnitude improvement possible with LISA Pathfinder Interferometer and GRS hardware (in quiet orbit)

Image credit: ESA

LPF /eLISA GRS in experimental gravitation

GRS innovations for sub-femto-g/Hz^{1/2} free-fall:

- Heavy Au/Pt test mass
- Large (3-4 mm) gaps
- No discharge wire and contact free injection
- Charge control with UV light
- Audio carrier frequency for «DC» actuation forces

Laser interferometry in LISA Pathfinder

• Heterodyne interferometer using a single laser, kHz heterodyne frequencies, and digital phasemeter

x12 lsd 5000-40000

10

Frequency [Hz]

10

- Measures TM relative motion to pm/VHz
- Measures TM angles to nrad/VHz
- Frequency range mHz to Hz
- FM built and tested

LPF Flight Model Units

Laser Ranging Interferometer (LRI) on GRACE Follow-On

- US-German collaboration, launch in 2017,
- Interferometry design and breadboarding from AEI Hannover,
- First interspacecraft laser interferometer, designed as experimental demonstrator, complimentary to traditional μ-Wave ranging system,
- LRI CDR successfully passed in May 2014.

Phase measurement system for intersatellite ranging

- LRI on GRACE Follow-on will use NASA/JPL phasemeter
- ESA development of LISA phasemeter completed (Danish-German consortium, AEI technical lead)
- Fulfills all LISA requirements which are harder then LRI (µrad carrier phase=pm, absolute ranging, data transfer)

Key Technologies availability

eLISA consortium

- Gravitational Reference Sensor and drag-free control (LISA Pathfinder – needs to be adapted)
- Laser interferometry in space (development completed for LPF and GRACE Follow-On, detailed LISA studies)
- Phasemeter (LPF is ready and to be flown in 2015, LISA at TRL 4)
- Laser (TRL 9, ready to fly)

CAS GW consortium

- Accelerometer (for geodesy missions)
- Micro-Newton ion thrusters (just started)
- Optics in space: laser interferometry (100pm/ \sqrt{Hz}),
- Phasemeter (prototype development just completed)
- Laser frequency stability (just started)

Important parts are all there, lots of options for splitting

Fundamental Physics

Gravity gradiometry

Planetary gravity field

Experimental test of general relativity

- Mercury perihelion
- Shapiro time delay
- Precision measurement of PPN parameters in solar system
- Tests of equivalence principle
- •

.Outstanding tests in 21st century

•Gravitational wave detection ----

• galactic and cosmological scale (eLISA, CAS project).

• test on the planetary and solar system scale.

General Relativity —a generalisation of Newtonian theory of gravity

classical mechanics

general relativity

geometry of spacetime ≈universal gravitation

$$g_{ab}=\left(egin{array}{ccc} +&&&\ &-&&\ &&-&\ &&-&-\end{array}
ight)$$
 Einstein field equations $R_{ab}-rac{1}{2}Rg_{ab}=8\pi T_{ab}$

Gravitomagnetic field in general relativity

Einstein field equations \approx Maxwell equation (1PN)

GPB experiment (1960-2011)

	Gravity Probe B – Final	Experimental Results	
Gyroscope	r _{N-S} (Geodetic Measurement)	r _{W-E} (Frame-Dragging Measurement)	
	Individual Gyro	scope Results	
Gyroscope #1	-6,588.6±31.7 mas/yr	-41.3±24.6 mas/yr	
Gyroscope #2	-6,707.0±64.1 mas/ yr	-16.1±29.7 mas/yr	
Gyroscope #3	-6,610.5±43.2 mas/yr	-25.0±12.1 mas/yr	
Gyroscope #4	-6,588.7±33.2 mas/yr	-49.3±11.4 mas/yr	
	Weighted-Average Results	for All Four Gyroscopes	
All Gyroscopes	-6,601.8±18.3 mas/yr	-37.2±7.2 mas/yr	\sim 19% error
	Schiff-Einstein Predicte	ed Theoretical Values	
Theoretical Gyroscope	-6,606.1 mas/yr	-39.2 mas/yr	

The LAGEOS I and II and LARES Missions (2013-)

Measurement in terms of Keplerian elements of spacecrafts

Highly depend on the detailed knowledge of Earth gravity field.

The Gravitomagnetic effect is now confirmed with 10% accuracy, subject to earth gravity field modelling+ non-gravitational force error. .

Other controversial claims of detection: Lunar Laser ranging, Mars orbiter....

- Poorly tested, still remain major
 challenge in experimental relativity
- Impose constraints in post newtonian
 limit of geometric gravity theories.
 Provide stringent tests on low energy
 effective theory coming from string
 theory and loop quantum gravity.
- Applications in future space science such as ClockSync in space and etc....

Gradiometric measurement of gravitomagnetic field

Braginsky, Polnarev(1981), Mashhoon, Paik, Will (1989) and others

3 axis gradiometer

Geodesic deviation (Jacobi) equation

$$\frac{D^2 X^a}{D\tau^2} = -R_{bcd}{}^a T^b T^d X^a$$

force gradient tensor

Analytic solution of the geodesic deviation equation at the 1PN level

$$x(\tau) \approx \frac{(1+\gamma+\frac{1}{4}\alpha_1)Jd\sin I\sin(\omega\tau)}{r^3}\tau$$
$$y(T), Z(T) << X(T)$$

Lorentz force of gravitomagnetic field

$$\vec{F} = 2m\vec{v} \times \vec{B}_g$$

 $|\vec{F}| = 2m|\vec{v}||\vec{B}_g|\cos\Psi$

$$|\vec{F}_1 - \vec{F}_2| \sim 2m |\vec{v}| |\vec{B}_g| (\sin \Psi) \Delta$$

The Mission Idea for Gravitomagnetic Effects

- Near polar orbits. To increase the GM signal while suppress the noises from gravitoelectric field.
- Altitude options: 3000km to 6000km (even to 10000km). Higher altitude will suppress the noises from higher order gravity multipoles.
- Eccentric orbits.
 Distinguish gravitomagnetic field signal from J₂ signal of earth gravity

Figure 8: The full period of the relative motions between the two orbiting masses along the transverse measurement direction. The orbit is set to be nearly circular polar orbit with semi-major a = 800m. The separation d between the two masses is about 70cm.

(a) The GM signal along the fixed transverse direction.

- Direct, precision measurement of earth's gravitomagnetic field predicted by Einstein's theory of general relativity .
- Improve the accuracy in the measurement of some post-Newtonian parameters in our solar system.
- New tests and constraints on alternative theories of gravity,
- low energy effective theory related to string theory and quantum gravity.

Precision measurement of PPN parameter

Parameter	Effect	Limit	Remarks
$\gamma - 1$	(i) Time delay	2.3×10^{-5}	Cassini tracking
	(ii) Light deflection	4×10^{-4}	VLBI
$\beta - 1$	(i) Perihelion shift	3×10^{-3}	$J_2 = 10^{-7}$ from
			helioseismology
	(ii) Nordtvedt effect	2.3×10^{-4}	$\eta = 4\beta - \gamma - 3$ assumed
ξ	Earth tides	10^{-3}	Gravimeter data
α_1	Orbital polarization	10^{-4}	Lunar laser ranging
			PSR J2317 + 1439
α_2	Solar spin precession	4×10^{-7}	Alignment of Sun and ecliptic
α_3	Pulsar acceleration	2×10^{-20}	Pulsar \dot{P} statistics
η^{a}	Nordtvedt effect	9×10^{-4}	Lunar laser ranging
ζ_1	-	2×10^{-2}	Combined PPN bounds
ζ_2	Binary motion	4×10^{-5}	\ddot{P}_p for PSR 1913 + 16
ζ3	Newton's 3rd law	10^{-8}	Lunar acceleration
ζ_4	-	-	Not independent

(Will, Theory and experiments in general relativity)

- Improve the accuracy in the measurement of α_1 to 10⁻⁵!
- α_{1} --- a measure of local Lorentz invariance of gravity theories.
- A test of quantum gravity violation of Loretnz invariance!

Chern-Simons modified gravity serves as a representative phenomenological model predicted by string theory and loop quantum gravity

$$S_{\rm CS} = \frac{1}{16\pi G} \int d^4x \frac{1}{4} f R^* R,$$

A characteristic and rather large signal in the in-line direction in our experiment.

$$-\frac{dJ\chi\sin I(\tau\omega\sin(\tau\omega)+\cos(\tau\omega))}{2r^3\omega}$$

The dimensionless parameter $\chi = 2\frac{\dot{f}}{r}$ describes the magnitude of the Chern-Simons action, which can be precisely measured or constrained to 10^{-15} !

Technical Challenges of Gravitomagnetism mission

- LPF measures distance variations between test masses, whereas here we need to sense shear motion.
- Spacecraft pointing needs to be monitored to high precision as reference direction (TRL too low!)
- Signal to noise ratio a worry!
- Signal frequency is 1/T_{orbit}, separation from disturbances is hard and requires more study.
- Separation from Earth's J₂.

Gravitomagnetic Effect

Planetary gravity field measurement and satellite gradiometry

Earth gravity field from satellite gradiometry

EGM2008: not globally same resolution, combining with local measurements, altimetry, modelling.

Long-term aim: globally high resolution from gravity alone

Enhanced earth gravity field recovery

orbit with constant inclination for the gradiometer, 450-650km in altitude

polar orbit to be occupied by the GRACE Follow on mission

Enhanced earth gravity field recovery

polar orbit to be occupied by the GRACE Follow on mission

Water Storage Changes over China

North Niemeng region (-), North China(-), Lower Reaches of Yangtze river (-), Middle and Upper Reaches of Yangtze river (+), Tian mountain snowfield (-), Himalayas Icefield (-). (GRACE data inversion by IGG, CAS)

Planetary gravity field Explore gravity of Ceres, an "embryonic planet" with water

- Most important parameters
 - Radius: 455-487 km
 - Low orbiter velocity: 0.36 km/s
 - Low orbiter period: 2h 12min
 - Proper rotation: 9 h
- DAWN mission (NASA)
 - Launched 2007, Vesta 2011, Ceres 2015
 - 1240 kg wet mass, 450 Mio US\$ (2007)
 - 90 mN Xe Ion thrusters
 - 1.3 kW solar panels, no RTG

New Sciences with realistic technologies

•Potential applications of LISA Pathfinder and GRACE Follow-On inherited technologies to other gravity experiments

•Adaptations are necessary for different dynamic range, different orbits or possibly new sensing axes

•Goals are very different:

- New results in fundamental physics: feasibility yet to be established
- Gravity map of planets interplanetary operation not yet studied
- Better Earth gravity map
 Very realistic and useful but not in the scope of the current call
- •Huge potential for joint technology development
- •Well established collaboration on both sides

New Science with realistic technologies

•Potential applications of LISA Pathfinder and GRACE Follow-On inherited technologies to other **gravity experiments**

•Adaptations are necessary for different dynamic range, different orbits or possibly new sensing axes

•Goals are very different:

- New results in fundamental physics: feasibility yet to be established
- Gravity map of planets interplanetary operation not yet studied
- Better Earth gravity map
 Very realistic and useful but not in the scope of the current call
- •Huge potential for joint technology development
- •Well established collaboration on both sides

