

# Mission, Instrument, and Performance of a combined DAIA/SULFRO/LUWISA mission



Maohai Huang<sup>1</sup>, Jingye Yan<sup>2</sup>, Linjie Chen<sup>1</sup>, Mo Zhang<sup>1</sup>, Mark Bentum<sup>3</sup>, Jan Bergman<sup>4</sup>, Albert-Jan Boonstra<sup>5</sup>, Baptiste Cecconi<sup>6</sup>, Xuelei Chen<sup>1</sup>, Xiaoyu Hong<sup>7</sup>, Leonid Gurvits<sup>8</sup>, Jianhua Zheng<sup>2</sup>, and Project collaborators <sup>1</sup> NAOC, China; <sup>2</sup> NSSC, China; <sup>3</sup> U. Twente, the Netherlands; <sup>4</sup> IRF, Sweden; <sup>5</sup> ASTRON, the Netherlands; <sup>6</sup> OBSPM, France; <sup>7</sup> SHAO, China; <sup>8</sup> JIVE/TUDelft, the Netherlands

Abstract: We present preliminary study results on mission, instrument, and observational performance of a small mission as a pathfinder and an important first step to open up the hitherto inaccessible ultra-long wavelength spectral window. The mission concept is mainly originated from DAIA and LUWISA proposals with input from SULFRO. The receiver and antenna design has heritage of previous cooperation. Sensitivity, sky coverage, and angular resolution are estimated based on mission and instrument parameters.

## Mission implementation concept • A constellation consisting of 12 or more nanosatellites (observing telescopes) + 1 microsatellite Mothership (processing, control data downlink center) => Imaging aperture array in

- space surveys all the sky all the time
- Frequency Range: 0.3 100 MHz, primarily below 30 MHz
- Array configuration: linear array or 3D-distribution array
- **Deployment location : Lunar orbit, Sun Earth Lagrange 2**
- **Observing modes: all-sky survey, spectroscopy, burst monitoring**
- Formation flying: active control or passive free flying 🥣
- **Mission lifetime: 3years**

- Receiver and Antenna System
  - **\* Requirements**

### **Performance Estimation**

#### **\*** Parameters

The following parameters are used for the lunar orbit array





Total noise temperature for the antenna at the output of LNA,

 $T_{ant} = (\eta T_{skv} + (1 - \eta)T_{amb} + T_{rec})G_{LNA}$ 

For the Galactic noise limited requirement,

$$SNR = \frac{\eta T_{sky} G_{LNA}}{\left[ \left( 1 - \eta \right) T_{amb} + T_{rec} \right] G_{LNA}} \ge 10$$



Simulations show that 7.5-meter Tripole antenna is feasible.

#### \* Receiver System



| Number of antenna                     | 12                   |  |
|---------------------------------------|----------------------|--|
| Number of simultaneous baseline       | 66                   |  |
| Longest baseline                      | 100 km               |  |
| Number of polarization                | 3                    |  |
| Orbital period                        | 2.3 hours            |  |
| Operation time                        | 3 years              |  |
| Lunar shielding time fraction         | 0.3                  |  |
| Antenna effective area <sup>a,b</sup> | 3*λ²*ε/(π*8)         |  |
| Integration bandwidth                 | 1 MHz (provisionary) |  |
|                                       |                      |  |

<sup>a</sup>Woan 1997 <sup>b</sup>We assume  $\varepsilon$  = 0.7 @ 1 MHz and  $\varepsilon$  = 0.95 @ 10 MHz

#### Sky Coverage

For every orbit of observation around the Moon, the directions perpendicular to the orbit plane has the best u-v coverage. Cross-dipole antennas are mounted so that their dual-lobe shaped main beam also points to the same directions. The antenna beam limits instantaneous field of view of the observation made in an orbit. The array uses orbital precession to cover the full sky in about 16 months. The figure to the right shows the simulation result of the efficiency of a line of sight at a given latitude in the procession coordinates, with beam shape and scanning action considered. The efficiency is  $\sim 1/3$ .



Latitude (degree)

#### \* Sensitivity Flux sensitivity

 $\sigma_s = \frac{2kT_{sys}}{A_e\sqrt{2n(n-1)\Delta\nu\tau n_p}}(Jy)$ 

Left: Block diagram showing the active antenna with the receiver unit.



#### \* Power Dissipation Estimation

Preamplifier (LNA) 153 mw per channel Differential driver for ADC 10 mW per channel 16 bits ADC @65 MSPS 60 mW per channel Low-Power Flash FPGA <400 mW Total Power <1.2 W Dynamical range

High system dynamical range is achieved with improved receiver design and taking advantage of the period when terrestrial, solar, and jovian emissions are shielded by the Moon.

 $D^2T_{sys}$ Temperature sensitivity  $\sigma_t = -$ 

Sensitivity after 3 years considering all factors

| Flux sensitivity |       | Temperature sensitivity |          |
|------------------|-------|-------------------------|----------|
| (Jy)             |       | (K)                     |          |
| 1MHz             | 10MHz | 1MHz                    | 10MHz    |
| 0.15             | 0.15  | 5.4 E+05                | 5.7 E+05 |

#### Angular resolution

The shortest and the longest baselines are ~30m and 100 km, respectively. At 0.5 MHz and 10 MHz, the array angular resolution is 25 arcmin and 1.2 arcmin, respectively.