Asset Publisher

Compound Semiconductor Radiation Detectors

Compound Semiconductor Radiation Detectors

Publication date: 22 September 2004

Authors: A. Owens, A. Peacock

Journal: NIM A
Volume: 531
Issue: 1-2
Page: 18-37

We discuss the potential benefits of using compound semiconductors for the detection of X- and gamma-ray radiation. While Si and Ge have become detection standards for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by one or more of their physical limitations; namely the need for ancillary cooling systems or bulky cryogenics, their modest stopping powers and radiation intolerance. Compound semiconductors encompass such a wide range of physical properties that it is technically feasible to engineer a material to any application. Wide band-gap compounds offer the ability to operate in a wide range of thermal and radiation environments, whilst still maintaining sub-keV spectral resolution at hard X-ray wavelengths. Narrow band-gap materials, on the other hand, offer the potential of exceeding the spectral resolution of both Si and Ge, by as much as a factor of 3. Assuming that the total system noise can be reduced to a level commensurate with Fano noise, spectroscopic detectors could work in the XUV, effectively bridging the gap between the ultraviolet and soft X-ray wavebands. Thus, in principle, compound semiconductor detectors can provide continuous spectroscopic coverage from the far infrared through to gamma-ray wavelengths. However, while they are routinely used at infrared and optical wavelengths, in other bands, their development has been plagued by material and fabrication problems. This is particularly true at hard X- and gamma-ray wavelengths, where only a few compounds (e.g., GaAs, CdZnTe and HgI2) have evolved sufficiently to produce working detection systems. In this paper, we examine the current status of research in compound semiconductors and by a careful examination of material properties and future requirements, recommend a number of compounds for further development.

Link to publication
Last Update: Sep 1, 2019 9:26:30 AM
13-Nov-2024 22:19 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/A2ryn9A

Images And Videos

Related Publications

Related Links

Documentation