Publication archive

Publication archive

Published online 26 January 2015

Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established. Modelling of infrared spectra obtained about ten kilometres from the nucleus of comet Hartley 2 suggests that larger dust particles are being physically decoupled from fine-grained water-ice particles that may be aggregates, which supports the icy-conglomerate model. It is known that comets build up crusts of dust that are subsequently shed as they approach perihelion. Micrometre-sized interplanetary dust particles collected in the Earth's stratosphere and certain micrometeorites are assumed to be of cometary origin. Here we report that grains collected from the Jupiter-family comet 67P/Churyumov-Gerasimenko come from a dusty crust that quenches the material outflow activity at the comet surface. The larger grains (exceeding 50 micrometres across) are fluffy (with porosity over 50 per cent), and many shattered when collected on the target plate, suggesting that they are agglomerates of entities in the size range of interplanetary dust particles. Their surfaces are generally rich in sodium, which explains the high sodium abundance in cometary meteoroids. The particles collected to date therefore probably represent parent material of interplanetary dust particles. This argues against comet dust being composed of a silicate core mantled by organic refractory material and then by a mixture of water-dominated ices. At its previous recurrence (orbital period 6.5 years), the comet's dust production doubled when it was between 2.7 and 2.5 astronomical units from the Sun, indicating that this was when the nucleus shed its mantle.
[Remainder of abstract truncated due to character limitations]

Published: 26 January 2015
Published online 10 December 2014

The provenance of water and organic compounds on the Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the D/H ratios in the reservoirs for comets and the Earth's oceans. Here we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard ESA's Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10−4, that is, ~3 times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean-like water.

Published: 23 January 2015
Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10-10 to 10-7 kilograms, and 48 grains of mass 10-5 to 10-2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.
Published: 23 January 2015
Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.
Published: 23 January 2015
Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.
Published: 23 January 2015
Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s-1 in early June 2014 to 1.2 kg s-1 in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the "neck" region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K-1 m-2 s-0.5), consistent with a thermally insulating powdered surface, is inferred.
Published: 23 January 2015
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ-1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
Published: 23 January 2015
The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (<800 electron volts), produced upstream of Rosetta, and lower energy locally produced ions; we estimate the fluxes of both ion species and energetic neutral atoms.
Published: 23 January 2015
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.
Published: 23 January 2015
Supermassive black holes (SMBHs) are found ubiquitously in large, bulge-dominated galaxies throughout the local universe, yet little is known about their presence and properties in bulgeless and low-mass galaxies. This is a significant deficiency, since the mass distribution and occupation fraction of nonstellar black holes provide important observational constraints on SMBH seed formation theories and many dwarf galaxies have not undergone major mergers that would erase information on their original black hole population. Using data from the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless and dwarf galaxies that display mid-infrared signatures of extremely hot dust highly suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report, in our first follow-up X-ray investigation of this population, that the irregular dwarf galaxy J132932.41+323417.0 (z = 0.0156) contains a hard, unresolved X-ray source detected by XMM-Newton with luminosity L2-10 keV = 2.4 × 1040 erg s-1, over two orders of magnitude greater than that expected from star formation, strongly suggestive of the presence of an accreting massive black hole. While enhanced X-ray emission and hot dust can be produced in extremely low metallicity environments, J132932.41+323417.0 is not extremely metal poor (≈40% solar). With a stellar mass of 2.0 × 108 M, this galaxy is similar in mass to the Small Magellanic Cloud, and is one of the lowest mass galaxies with evidence for a massive nuclear black hole currently known.
Published: 18 December 2014
The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs.
Published: 18 December 2014
Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500 μm obtained with the Herschel telescope, we investigate the dust-obscured star formation (SF) in the galaxy cluster XDCP J0044.0-2033 at z = 1.58, the most massive cluster at z > 1.5, with a measured mass M200 = 4.7+1.4-0.9 × 1014 M. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with ≥3σ significance in the PACS maps, all ultraluminous infrared galaxies. The individual star formation rates (SFRs) lie in the range 155-824 M yr-1, with dust temperatures of 24-35 K. We measure a strikingly high amount of SF in the cluster core, SFR (<250 kpc) ≥ 1875 ± 158 M yr-1, four times higher than the amount of SF in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z ~ 1.6 in a massive cluster.
Published: 13 December 2014
Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively unexplored observational band between 30 and 857 GHz. Planck enables the assembly of comprehensive PNe spectral energy distributions (SEDs) from radio to far-IR frequencies. Modelling the derived SEDs provides us with information on physical properties of CSEs and the mass content of both main components: ionized gas, traced by the free-free emission at cm–mm waves; and thermal dust, traced by the millimetre and far-IR emission. In particular, the amount of ionized gas and dust has been derived here. Such quantities have also been estimated for the very young PN CRL 618, where the strong variability observed in its radio and millimetre emission has previously prevented constructing its SED. A morphological study of the Helix Nebula was also performed. Planck maps reveal, for the first time, the spatial distribution of the dust inside the envelope, allowing us to identify different components, the most interesting of which is a very extended component (up to 1 pc) that may be related to a region where the slow expanding envelope is interacting with the surrounding interstellar medium.
Published: 08 December 2014
We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 AA. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Delta([N/Fe])=2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions we find roughly equal numbers of "N-normal" and "N-enhanced" stars (formally about 40% N-normal stars in Fornax 1, 3, and 5 and 60% in Fornax 2). We conclude that GC formation, in particular regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs.
Published: 20 November 2014
We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (~1-15MJ) long-period planets should be discovered out to distances of ~500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ~25-50 intermediate-period (P ~ 2-3 yr) transiting systems.
Published: 19 November 2014
Context. The first release of astrometric data from Gaia is expected in 2016. It will contain the mean stellar positions and magnitudes from the first year of observations. For more than 100 000 stars in common with the Hipparcos Catalogue it will be possible to compute very accurate proper motions due to the time difference of about 24 years between the two missions. This Hundred Thousand Proper Motions (HTPM) project is planned to be part of the first release.
Aims. Our aim is to investigate how early Gaia data can be optimally combined with information from the Hipparcos Catalogue in order to provide the most accurate and reliable results for HTPM.
Methods. The Astrometric Global Iterative Solution (AGIS) was developed to compute the astrometric core solution based on the Gaia observations and will be used for all releases of astrometric data from Gaia. We adapt AGIS to process Hipparcos data in addition to Gaia observations, and use simulations to verify and study the joint solution method.
Results. For the HTPM stars we predict proper motion accuracies between 14 and 134 μas yr-1, depending on stellar magnitude and amount of Gaia data available. Perspective effects will be important for a significant number of HTPM stars, and in order to treat these effects accurately we introduce a formalism called scaled model of kinematics (SMOK). We define a goodness-of-fit statistic which is sensitive to deviations from uniform space motion, caused for example by binaries with periods of 10–50 years.
Conclusions. HTPM will significantly improve the proper motions of the Hipparcos Catalogue well before highly accurate Gaia-only results become available.
[Remainder of abstract truncated due to character limitations]
Published: 14 November 2014
The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on ChandraHigh Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E1 ≃ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ≃ 52° and an inner disk radius of Rin ≃85 GM/c², which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ≃ (2-6) × 1010 G. Furthermore, we identify an absorption feature near ≃ 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of vout ≃ (7.5-8.2) × 10³ km s-1 (≃ 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.
Published: 03 November 2014
The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8° to 15′ are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 ≤ ℓ ≤ 390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same ℓ range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra.
--- Remainder of abstract truncated due to character limitations ---
Published: 29 October 2014
We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000  GHz, and the auto-bispectrum from 217 to 545  GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545  GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies.
--- Remainder of abstract truncated due to character limitations ---
Published: 29 October 2014
7-Sep-2024 14:28 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW