Publication archive

Publication archive

We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12, and 39 μK in the four lowest HFI frequency channels (100−353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.
Published: 29 October 2014
We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the orbital dipole plus the solar dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the solar system with respect to the cosmic microwave background (CMB) rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data release we rely on the characterization of the solar dipole as measured by WMAP. We also present preliminary results (at 44 GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the solar system speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which considers the full beam response in estimating the signal generated by the dipole. Moreover, in order to further reduce the impact of residual systematics due to sidelobes, we estimated time variations in the calibration constant of the 30 GHz radiometers (the ones with the largest sidelobes) using the signal of an internal reference load at 4 K instead of the CMB dipole. We have estimated the accuracy of the LFI calibration following two strategies: (1) we have run a set of simulations to assess the impact of statistical errors and systematic effects in the instrument and in the calibration procedure; and (2) we have performed a number of internal consistency checks on the data and on the brightness temperature of Jupiter. Errors in the calibration of this Planck/LFI data release are expected to be about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz.
--- Remainder of abstract truncated due to character limitations ---
Published: 29 October 2014
This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at ℓ ≈ 600), and 0.7% at 70 GHz (at ℓ ≈ 1000).
Published: 29 October 2014
We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated by sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range ℓ < 20, most notably at 30 GHz, and is probably caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.
Published: 29 October 2014
We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44, and 70 GHz. In particular, we discuss the various steps involved in reducing the data, from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least squares map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the ≈−20 dB level using Jupiter transits, which are also used for the geometrical calibration of the focal plane.
Published: 29 October 2014
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures.
--- Remainder of abstract truncated due to character limitations ---
Published: 29 October 2014
Press kit for the 12 November 2014 press event marking the landing of Rosetta's lander Philae on comet 67P/Churyumov-Gerasimenko.

Contents:
Media services
Mission facts
Highlights
Selecting a landing site
Landing on a comet
Comets – an introduction
Rosetta's comet
Missions to comets
Appendix A: Provisional programme for press event at ESOC
Appendix B: Selected images and videos
Appendix C: Distances, dates, times for mission
Appendix D: Timeline for separation

Errata

pg 48: a minus sign is missing from the temperature quoted. The text should read: "The average surface temperature, reported by the VIRTIS team, is -70 °C (205 K)"
Published: 05 November 2014
The European Space Agency's Rosetta spacecraft flew by asteroid (21) Lutetia on July 10, 2010. Observations through the OSIRIS camera have revealed many geological features. Lineaments are identified on the entire observed surface of the asteroid. Many of these features are concentric around the North Pole Crater Cluster (NPCC). As observed on (433) Eros and (4) Vesta, this analysis of Lutetia assesses whether or not some of the lineaments could be created orthogonally to observed impact craters. The results indicate that the orientation of lineaments on Lutetia's surface could be explained by three impact craters: the Massilia and the NPCC craters observed in the northern hemisphere, and candidate crater Suspicio inferred to be in the southern hemisphere. The latter has not been observed during the Rosetta flyby. Of note, is that the inferred location of the Suspicio impact crater derived from lineaments matches locations where hydrated minerals have been detected from Earth-based observations in the southern hemisphere of Lutetia. Although the presence of these minerals has to be confirmed, this analysis shows that the topography may also have a significant contribution in the modification of the spectral shape and its interpretation. The cross-cutting relationships of craters with lineaments, or between lineaments themselves show that Massilia is the oldest of the three impact feature, the NPCC the youngest, and that the Suspicio impact crater is of intermediate age that is likely occurred closer in time to the Massilia event.
Published: 16 October 2014

Press kit updated in October for Go for landing on the primary landing site.

Contents:
Media services
Quick reference mission facts
Highlights from the Rosetta mission thus far
Selecting Site J, a landing site for Philae
Landing on a Comet
Comets – an introduction
Rosetta's comet – at a glance
Missions to comets - Rosetta in context
Appendix A: Distances, dates, times for mission milestones

Published: 13 October 2014
Published online 9 October 2014, in Science Express

Exoplanets that orbit close to their host stars are much more highly irradiated than their Solar System counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly-irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18+0.07-0.12and an altitude dependence in the hot-spot offset relative to the substellar point.

Published: 10 October 2014
Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009 (refs 1, 2). A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 kilometres. A temperature maximum was previously observed there, and condensation was not expected for any of Titan's atmospheric gases. Here we report that this cloud is composed of micrometre-sized particles of frozen hydrogen cyanide (HCN ice). The presence of HCN particles at this altitude, together with temperature determinations from mid-infrared observations, indicate a dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such cooling is in contrast to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. These results show that post-equinox cooling at the winter pole of Titan is much more efficient than previously thought.
Published: 03 October 2014
Reference: ESA/SRE(2014)1

This report, the so-called Red Book, provides a scientific, technical and management summary of the JUICE definition study that was performed from February 2012 to October 2014.

The JUICE (JUpiter ICy moons Explorer) mission has been selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015-2025.

Published: 01 October 2014
Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.
Published: 25 September 2014
Published online: 17 September 2014

Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 108 solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 107 solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

Published: 19 September 2014
The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.
Published: 13 September 2014
Published online: 12 September 2014

Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus.

Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations.

Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.

Published: 13 September 2014
Unedited accepted article published online 11 September 2014.
Final edit of article will appear later.

On September 26th, 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 minutes before the closest approach, the Electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave (RPWS) instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low Energy Magnetospheric Measurement System (MIMI-LEMMS), indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (~ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

Published: 12 September 2014
Reference: SPC(2013)33 The CHaracterising ExOPlanet Satellite (CHEOPS) is a Small mission in the ESA Science Programme to be implemented in partnership with Switzerland, and with a number of Member States delivering significant contributions. These Member States are Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Sweden, and UK, and will cooperate under a Swiss led CHEOPS Mission Consortium (CMC). The Science Management Plan (SMP) defines the top-level science management principles and organisation of the mission. It identifies roles and duties of ESA, the CMC, and the scientific community at large. The document provides an overview of the mission science objectives and a high-level description of the operations and processes that will be established to generate the outlined scientific data products. The SMP addresses the data rights policy, and the distribution of responsibilities for public outreach and communication.
Published: 25 October 2013
The deflection angles of lensed sources increase with their distance behind a given lens. We utilize this geometric effect to corroborate the zphot ≃ 9.8 photometric redshift estimate of a faint near-IR dropout, triply imaged by the massive galaxy cluster A2744 in deep Hubble Frontier Fields images. The multiple images of this source follow the same symmetry as other nearby sets of multiple images that bracket the critical curves and have well-defined redshifts (up to zspec ≃ 3.6), but with larger deflection angles, indicating that this source must lie at a higher redshift. Similarly, our different parametric and non-parametric lens models all require this object be at z ≳ 4, with at least 95% confidence, thoroughly excluding the possibility of lower-redshift interlopers. To study the properties of this source, we correct the two brighter images for their magnifications, leading to a star formation rate of ~0.3 M yr-1, a stellar mass of ~4 × 107 M, and an age of ≲ 220 Myr (95% confidence). The intrinsic apparent magnitude is 29.9 AB (F160W), and the rest-frame UV (~1500 Å) absolute magnitude is MUV, AB = -17.6. This corresponds to ~ 0.1 L*z=8 (~0.2 L*z=10, adopting dM*/dz ~ 0.45), making this candidate one of the least luminous galaxies discovered at z ~ 10.
Published: 05 September 2014
Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structures I or II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, respectively. The other molecules present in the liquid are trapped in clathrates. Any river or lake emanating from subsurface liquid reservoirs that significantly interacted with clathrate reservoirs should present such composition. On the other hand, lakes and rivers sourced by precipitation should contain higher fractions of methane and nitrogen, as well as minor traces of argon and carbon monoxide.
Published: 02 August 2014
24-Nov-2020 10:10 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW