Publication archive

Publication archive

We use multicomponent measurements of the four Cluster spacecraft and a backward ray tracing simulation to estimate the location and size of the global source of whistler mode chorus emissions in the magnetic equatorial plane. For the first time, analysis is made in a broad range of latitudes in both hemispheres along a single Cluster orbit. Our results show that for different time intervals, the sizes of the observed portions of the global chorus source region in the equatorial plane varied between 0.4 and 1.5 Earth radii. They were found at radial distances between 4.5 and 8.2 Earth radii during 2 h of measurements. Therefore, the superposed minimum width of the global source region of whistler mode chorus in the magnetic equatorial plane is approximately 4 Earth radii.
Published: 01 April 2010
We use multicomponent measurements of the four Cluster spacecraft and a backward ray tracing simulation to estimate the location and size of the global source of whistler mode chorus emissions in the magnetic equatorial plane. For the first time, analysis is made in a broad range of latitudes in both hemispheres along a single Cluster orbit. Our results show that for different time intervals, the sizes of the observed portions of the global chorus source region in the equatorial plane varied between 0.4 and 1.5 Earth radii. They were found at radial distances between 4.5 and 8.2 Earth radii during 2 h of measurements. Therefore, the superposed minimum width of the global source region of whistler mode chorus in the magnetic equatorial plane is approximately 4 Earth radii.
Published: 01 April 2010
The assessment study of an Exoplanet Spectroscopy Mission (ESM) has been performed at ESA's Concurrent Design Facility (CDF) and ran from mid-February to end-March 2010.

This internal final presentation has been prepared by the ESM/CDF team and summarizes the outcome of the ESM assessment study.

Contents of the presentation:

  • Overview / Agenda
  • System Presentation
  • Payload Instruments (Telescope; Instruments; Detectors)
  • Discipline presentations (AOCS; Configuration; Structures; Thermal; Propulsion; Power; DHS; GS/OPS; Communications; Programmatics; Risk)
  • Conclusions
Published: 26 March 2010
Aims. To separate stars and galaxies in the far infrared AKARI All-Sky Survey data, we have selected a sample with the complete color information available in the low extinction regions of the sky and constructed color-color plots for these data. We looked for the method of separating stars and galaxies using the color information.
Methods. We performed an extensive search for the counterparts of these selected All-Sky Survey objects in the NED and SIMBAD databases. Among 5176 selected objects, we found 4272 galaxies, 382 other extragalactic objects, 349 Milky Way stars, 50 other Galactic objects, and 101 sources detected before in various wavelengths but of an unknown origin. Twenty-two sources were left unidentified. Then, we checked the colors of stars and galaxies in the far-infrared flux-color and color-color plots.
Results. In the resulting diagrams, stars form two clearly separated clouds. One of them is easily distinguished from galaxies and allows for a simple method of excluding a large part of stars using the far-infrared data. The other smaller branch, overplotting galaxies, consists of stars known to have an infrared excess, like Vega and some fainter stars discovered by IRAS or 2MASS. The color properties of these objects in any case make them very difficult to distinguish from galaxies.
Conclusions. We conclude that the FIR color-color diagrams allow for a high-quality star-galaxy separation.With the proposed simple method we can select more that 95% of galaxies rejecting at least 80% of stars.
Published: 24 March 2010
This draft version of "A Roadmap for Exoplanets" was prepared by the Exoplanet Roadmap Advisory Team (EPR-AT), an expert advisory team appointed by ESA. This is a working draft document that will be completed and revised after the "A Roadmap for Exoplanets" workshop (7-8 April 2010, University College London).
Published: 22 March 2010
The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?
Published: 19 March 2010
We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.
Published: 19 March 2010
Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 ± 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a 'temperate' photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn.
Published: 18 March 2010
Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a - c) and 103 meters (b - c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.
Published: 12 March 2010
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.
Published: 11 March 2010
We have used the ion composition data from the CIS/CODIF instrument on Cluster to determine how the O+ population in the plasma sheet and the adjacent lobes changes during geomagnetic storms. The Cluster trajectory, which moves over the polar cap, into the lobe, and then into the plasma sheet on each orbit, allows us to track the changes in O+ in these regions for a prestorm orbit, main-phase orbit, and recovery phase orbit. We find that changes in the O+ density and pressure in the plasma sheet are similar to those commonly observed in the ring current during a storm. The O+ is low prestorm. It increases by about a factor of 10 just prior to or during the early main phase of the storm, and is reduced, but usually not down to prestorm levels, in the recovery phase. The lobes contain tailward streaming O+ which originates in the "cleft ion fountain". During the storms main phase, this population also increases. A detailed look at the main-phase passes shows that a significant increase in the O+/H+ ratio is observed when this lobe population reaches the plasma sheet, and the tailward streaming O+ is observed continuously as the spacecraft moves from the lobe into the plasma sheet. The enhanced O+ in the lobe and the plasma sheet is observed for many hours during the storm. The inward convection of this population is likely a significant contributor to the storm time ring current.
Published: 09 March 2010
The eccentric orbit of Mars Express allows some close encounters with PHOBOS. Four observations were organized up to August 11, 2004. The spacecraft was put in a fixed inertial position, and Phobos was scanned from the orbital motion, crossing the slit of SPICAM UV imaging spectrometer in a few seconds. The distance was from 150 to 1900 km. Along the slit, five FOV of 10 x 1.3 arcmin each recorded the UV spectrum (110-310 nm, resolution 1.5 nm) of scattered solar light, resulting in 30 to 50 independent UV spectra at each encounter, and giving an unprecedented spatial resolution in UV. From the absolute calibration of SPICAM with star observations, the albedo may be determined as a function of wavelength and geography. Albedo markings were search for. The UV color (wavelength trend in the range 200-320 nm) was determined.Comparisons with previous measurements (in particular HST) will be discussed, with potential implications for mineralogy of Phobos.
Published: 11 November 2004

Abstract No. 1832

As a complement to Mars observations, Phobos spectral imaging was implemented in order to acquired compositional mapping with the prime objective to answer to the following questions:

  1. Is Phobos a "primitive" (undifferentiated) body, or is its mass sufficient for this small body to have suffered some degree of internal differentiation, so as to exhibit surface compositional variations reflecting variation with depth?
  2. Can one detect surface material containing either volatile or organic compounds ?
We will present an overview of the results acquired, and discuss them in terms of planetary differentiation.

Published: 10 March 2008

Abstract No. 2195

Of the many previous hypotheses concerning the origin of Phobos' grooves, most authorities agree that their formation is in some way connected with the creation of Stickney crater, at nearly 10 km diameter the largest crater on Phobos [1,2,3]. The principal argument for the Stickney association has been that the grooves form a pattern that is approximately radial to Stickney [1,2]. However, such hypotheses were based on incomplete mapping of the satellite, the largest poorly-imaged area being adjacent to Stickney's western rim. Much of the unknown region has now been imaged by HRSC, and we have assembled a new groove map from this and all other available imagery. The impression of grooves radial to Stickney can be seen to be an artefact of the previous coverage. East of Stickney this idea can be sustained, but west of it the pattern is tangential to the crater. The satellite-wide groove pattern can be seen to be centred not at Stickney, but at the leading apex of Phobos in its orbit (i.e. 90° long., 0° lat.). Groove orientations are quite independent of Stickney and bear no relation to it.

Published: 13 March 2006
The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20-25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.
Published: 02 April 2008
Aims. New astrometric measurements for Phobos are reported on the basis of 69 SRC (Super Resolution Channel) images obtained during 28 Mars Express Phobos flybys executed between 2004 and 2007. Methods. The measurements have been made using a newly developed technique that involves positional measurements of surface control points and verification of camera pointing by background stars. Results. The astrometric positions are in excellent agreement with currently available Phobos orbit models. However, we find remaining systematic offsets of 1.5-2.6 km such that Phobos is ahead of its predicted position along the track. Conclusions. Our observations will be a basis for further improvements in the Phobos ephemeris. The methods that we have developed will be useful for the astrometric tracking of planetary or asteroidal targets and spacecraft optical navigation in future planetary missions.
Published: 25 February 2010
We present new ephemerides of Phobos and Deimos that are fit to observations from 1877 to 2005 and include recent spacecraft observations by Mars Global Surveyor and Mars Express. In contrast to earlier models, this is the first completely numerical one. In particular, the tidal effects have been modeled by the tidal bulge raised by each moon on the planet, instead of fitting secular accelerations in the satellite longitudes. This partly avoids absorbing the Deimos observational errors in its related tidal acceleration. Moreover, applying this model to other systems will be easier. Our estimate of the Martian dissipation is Q = 79.91±0.69 (1sigma-formal error) when assuming k2 = 0.152 for the Martian Love number and GmPh= 0.68 X 106 m3/s2 for the Phobos mass. We also report the possibility of fitting the Phobos oblateness gravity field. We suspect a non-uniform density for Phobos or a bias in either the observations or the Martian gravity field. A FORTRAN subroutine that computes the Martian moons' ephemerides is available on request.
Published: 04 April 2007
Observations of Phobos and Deimos, carried out by the SRC (Super Resolution Channel) on the Mars Express spacecraft between May 2004-April 2005, were used to determine the center-of-figure positions of the two Satellites with accuracies of 0.5-5 km (Phobos) and 1.0 km (Deimos). We find that the Phobos and Deimos orbit predictions from NASA-JPL (Jet Propulsion Laboratory) and ESA-ESOC (European Space Operation Center) differ substantially among each other and also do not agree with the actually observed positions of the satellites. Hence, our new astrometric data may motivate new efforts for Phobos and Deimos orbit modeling.
Published: 01 March 2006
A new independent control point network for Phobos was computed from image data obtained by the SRC (Super Resolution Channel) on board the European Mars Express Mission. The network solution includes 3D coordinates of 665 surface control points and was used to observe the forced libration amplitude of Phobos. Based on the network control points a spherical harmonic function model to degree and order 17 was derived, from which volume, bulk density and moments of inertia were computed. The modeled forced libration amplitude agrees to our observation within the error bands, indicating a homogeneous mass distribution for Phobos. To bring both values into exact agreement with the observations, different mass distribution models were applied. It appears that the amplitude is relatively insensitive to a simple two-layer density model.
Published: 27 August 2009
Phobos flyby images obtained by the High Resolution Stereo Camera (HRSC) and the Super Resolution Channel (SRC) onboard the Mars Express spacecraft were used to produce a global Digital Terrain Model and orthoimage mosaics. We derived a set of Phobos topographic image maps, which are combined into an atlas that consists of four quadrangles on three map sheets at the scale of 1: 50,000. The lateral geometric accuracy of these maps of ± 20 m is more than four times better than that of past products. They are based on a shape model with 0.52° × 0.52° grid spacing and show significantly more detail in comparison to previous data products.
Published: 02 November 2009
25-Oct-2020 20:34 UT

ShortUrl Portlet

Shortcut URL