Publication archive

Publication archive

Context. This paper presents an overview of the photometric data that are part of the first Gaia data release.

Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented.

Methods. The calibration strategy is outlined briefly and the main properties of the resulting photometry are presented.

Results. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases.

Published: 23 February 2017
Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of ~1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity ≥1041 erg second -1) might harbor NSs.
Published: 20 February 2017
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ~2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ~1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf's tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system.
Published: 09 February 2017
We present UBVRI and CT1T2 photometry for 15 catalogued open clusters of relative high brightness and compact appearance. From these unprecedented photometric data sets, covering wavelengths from the blue up to the near-infrared, we performed a thorough assessment of their reality as stellar aggregates. We statistically assigned to each observed star within the object region a probability of being a fiducial feature of that field in terms of its local luminosity function, colour distribution and stellar density. Likewise, we used accurate parallaxes and proper motions measured by the Gaia satellite to help our decision on the open cluster reality. 10 catalogued aggregates did not show any hint of being real physical systems; three of them had been assumed to be open clusters in previous studies, though. On the other hand, we estimated reliable fundamental parameters for the remaining five studied objects, which were confirmed as real open clusters. They resulted to be clusters distributed in a wide age range, 8.0 ≤ log (t yr-1) ≤ 9.4, of solar metal content and placed between 2.0 and 5.5 kpc from the Sun. Their ages and metallicities are in agreement with the presently known picture of the spatial distribution of open clusters in the Galactic disc.
Published: 12 January 2017
Magnetic reconnection–the process responsible for many explosive phenomena in both nature and laboratory–is efficient at dissipating magnetic energy into particle energy. To date, exactly how this dissipation happens remains unclear, owing to the scarcity of multipoint measurements of the "diffusion region" at the sub-ion scale. Here we report such a measurement by Cluster–four spacecraft with separation of 1/5 ion scale. We discover numerous current filaments and magnetic nulls inside the diffusion region of magnetic reconnection, with the strongest currents appearing at spiral nulls (O-lines) and the separatrices. Inside each current filament, kinetic-scale turbulence is significantly increased and the energy dissipation, E' ⋅ j, is 100 times larger than the typical value. At the jet reversal point, where radial nulls (X-lines) are detected, the current, turbulence, and energy dissipations are surprisingly small. All these features clearly demonstrate that energy dissipation in magnetic reconnection occurs at O-lines but not X-lines.
Published: 12 January 2017
Wave function collapse models postulate a fundamental breakdown of the quantum superposition principle at the macroscale. Therefore, experimental tests of collapse models are also fundamental tests of quantum mechanics. Here, we compute the upper bounds on the collapse parameters, which can be inferred by the gravitational wave detectors LIGO, LISA Pathfinder, and AURIGA. We consider the most widely used collapse model, the continuous spontaneous localization (CSL) model. We show that these experiments exclude a huge portion of the CSL parameter space, the strongest bound being set by the recently launched space mission LISA Pathfinder. We also rule out a proposal for quantum-gravity-induced decoherence.
Published: 23 December 2016
This e-book (pdf, 33MB) is a collection of public contributions to celebrate the impact of the European Space Agency's Rosetta mission (2004-2016).

The contributions were shared on the Rosetta Legacy tumblr in September–October 2016.

This publication contains stories, images, videos, creations and experiences that convey the impact and meaning of the Rosetta Mission on the public. It provides a taste of Rosetta's legacy for fellow science communicators, scientists and engineers, educators, space enthusiasts – anyone who was fascinated by the mission.

Published: 22 December 2016

Context. The European Space Agency spacecraft Gaia is expected to observe about 10 000 Galactic Cepheids and over 100 000 Milky Way RR Lyrae stars (a large fraction of which will be new discoveries), during the five-year nominal lifetime spent scanning the whole sky to a faint limit of G = 20.7 mag, sampling their light variation on average about 70 times.

Aims. We present an overview of the Specific Objects Study (SOS) pipeline developed within the Coordination Unit 7 (CU7) of the Data Processing and Analysis Consortium (DPAC), the coordination unit charged with the processing and analysis of variable sources observed by Gaia, to validate and fully characterise Cepheids and RR Lyrae stars observed by the spacecraft. The algorithms developed to classify and extract information such as the pulsation period, mode of pulsation, mean magnitude, peak-to-peak amplitude of the light variation, subclassification in type, multiplicity, secondary periodicities, and light curve Fourier decomposition parameters, as well as physical parameters such as mass, metallicity, reddening, and age (for classical Cepheids) are briefly described.

Methods. The full chain of the CU7 pipeline was run on the time series photometry collected by Gaia during 28 days of ecliptic pole scanning law (EPSL) and over a year of nominal scanning law (NSL), starting from the general Variability Detection, general Characterization, proceeding through the global Classification and ending with the detailed checks and typecasting of the SOS for Cepheids and RR Lyrae stars (SOS Cep&RRL).

[Remainder of abstract truncated due to character limitations]
Published: 24 November 2016

Context. Gaia is an ESA cornerstone mission launched on 19 December 2013 aiming to obtain the most complete and precise 3D map of our Galaxy by observing more than one billion sources. This paper is part of a series of documents explaining the data processing and its results for Gaia Data Release 1, focussing on the G band photometry.

Aims. This paper describes the calibration model of the Gaia photometric passband for Gaia Data Release 1.

Methods. The overall principle of splitting the process into internal and external calibrations is outlined. In the internal calibration, a self-consistent photometric system is generated. Then, the external calibration provides the link to the absolute photometric flux scales.

Results. The Gaia photometric calibration pipeline explained here was applied to the first data release with good Results. Details are given of the various calibration elements including the mathematical formulation of the models used and of the extraction and preparation of the required input parameters (e.g. colour terms). The external calibration in this first release provides the absolute zero point and photometric transformations from the Gaia G passband to other common photometric systems.

Conclusions. This paper describes the photometric calibration implemented for the first Gaia data release and the instrumental effects taken into account. For this first release no aperture losses, radiation damage, and other second-order effects have not yet been implemented in the calibration.

Published: 24 November 2016

The European Space Agency’s Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometric measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acquired during a two-year window beginning at payload switch-on. Results for parameters such as readout noise and electronic offset behaviour are presented and we pay particular attention to the effects of the L2 radiation environment on the devices. The radiation-induced degradation in the charge transfer efficiency (CTE) in the (parallel) scan direction is clearly diagnosed; however, an extrapolation shows that charge transfer inefficiency (CTI) effects at end of mission will be approximately an order of magnitude less than predicted pre-flight. It is shown that the CTI in the serial register (horizontal direction) is still dominated by the traps inherent to the manufacturing process and that the radiation-induced degradation so far is only a few per cent.

[Remainder of abstract truncated due to character limitations]
Published: 24 November 2016

Context. As part of the data processing for Gaia Data Release 1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. Although the auxiliary quasar solution was important for internal validation and calibration purposes, the resulting positions are in general not published in Gaia DR1.

Aims. We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level.

Methods. Descriptive statistics are used to characterise the optical data for the ICRF sources and the optical-radio differences. The most discrepant cases are examined using online resources to find possible alternative explanations than a physical optical-radio offset of the quasars.

Results. In the auxiliary quasar solution 2191 sources have good optical positions matched to ICRF2 sources with high probability. Their formal standard errors are better than 0.76 milliarcsec (mas) for 50% of the sources and better than 3.35 mas for 90%. Optical magnitudes are obtained in Gaia's unfiltered photometric G band. The Gaia results for these sources are given as a separate table in Gaia DR1. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%.

[Remainder of abstract truncated due to character limitations]

Published: 24 November 2016

Context. Gaia Data Release 1 (DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase.

Aims. We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results.

Methods. For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained, essentially by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data.

Results. For about two million of the brighter stars (down to magnitude ~11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending for example on position and colour are at a level of ± 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to ~10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas yr-1. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas yr-1.

[Remainder of abstract truncated due to character limitations]
Published: 24 November 2016

Context. The first data release from the Gaia mission contains accurate positions and magnitudes for more than a billion sources, and proper motions and parallaxes for the majority of the 2.5 million Hipparcos and Tycho-2 stars.

Aims. We describe three essential elements of the initial data treatment leading to this catalogue: the image analysis, the construction of a source list, and the near real-time monitoring of the payload health. We also discuss some weak points that set limitations for the attainable precision at the present stage of the mission.

Methods. Image parameters for point sources are derived from one-dimensional scans, using a maximum likelihood method, under the assumption of a line spread function constant in time, and a complete modelling of bias and background. These conditions are, however, not completely fulfilled. The Gaia source list is built starting from a large ground-based catalogue, but even so a significant number of new entries have been added, and a large number have been removed. The autonomous onboard star image detection will pick up many spurious images, especially around bright sources, and such unwanted detections must be identified. Another key step of the source list creation consists in arranging the more than 1010 individual detections in spatially isolated groups that can be analysed individually.

Results. Complete software systems have been built for the Gaia initial data treatment, that manage approximately 50 million focal plane transits daily, giving transit times and fluxes for 500 million individual CCD images to the astrometric and photometric processing chains. The software also carries out a successful and detailed daily monitoring of Gaia health.

Published: 24 November 2016

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.

Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.

Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.

Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ~3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of ~0.3 mas should be added to the parallax uncertainties. For the subset of ~94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1.
[Remainder of abstract truncated due to character limitations]

Published: 24 November 2016

Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

Published: 24 November 2016

The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by ~0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39RM around aphelion and proceeds to a maximum of 2.65RM around perihelion, presenting an overall variation of ~11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of ~2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.

Published: 21 November 2016

Published online 17 November 2016

Carbon dioxide is one of the most abundant species in cometary nuclei, but due to its high volatility CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area, located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80×60 m area is CO2 ice. This exposed ice was observed a short time after exiting from local winter; following the increased illumination, the CO2 ice completely disappeared over about three weeks. We estimate the mass of the sublimated CO2 ice and the depth of the surface eroded layer. The presence of CO2 ice is interpreted as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

Published: 17 November 2016
The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 m2) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
Published: 17 November 2016

Context. First results based on Gaia data show that the well-known star Gliese 710 will be the closest flyby star in the next several Myrs and its minimum distance from the Sun will be almost five times smaller than that suggested by pre-Gaia solution.

Aims. The aim of this work is to investigate the proximity parameters and the influence of the close approach of Gliese 710 on the basis of Gaia DR1. Furthermore, we compare new results with previous works based on HIP2 and Tycho 2 catalogues to demonstrate how Gaia improves the accuracy of determination of such phenomena.

Methods. Using a numerical integration in an axisymmetric Galactic model, we determine new parameters of the close encounter for Gliese 710. Adding ten thousand clones drawn with the use of a covariance matrix, we estimate the most probable position and velocity of this star at the minimum distance from the Sun.

Results. Our calculations show that Gliese 710 will pass 13365 AU from the Sun in 1.35 Myr from now. At this proximity it will have the brightness of -2.7 mag and a total proper motion of 52.28 arcsec per year. After the passage of Gliese 710 we will observe a large flux of new long-period comets. Thanks to the Gaia mission, the uncertainties of the minimum distance and time of the close approach are several times smaller than suggested by previous works based on data from earlier observations.

Published: 15 November 2016
Understanding the origin (volcanic or sedimentary) and timing of intercrater plains is crucial for deciphering the geological evolution of Mars. We have produced a detailed geological map of the intercrater plains north of the Hellas basin, based on images from the Mars Express High-Resolution Stereo Camera, the Mars Reconnaissance High-Resolution Imaging Science Experiment, and Context. Erosional windows and fresh impact craters provide a way of studying the lithology of intercrater plain units. They are composed predominantly of light-toned sedimentary rocks with subhorizontal bedding over a broad extent (greater than tens of kilometers), showing cross-bedding stratifications locally. The broad extent, geometry, and flat topography of these sediments favor a formation by aqueous processes (alluvial and lacustrine) rather than airfall (eolian and volcaniclastic). The Late Noachian (~3.7 Ga) sedimentary plains are locally covered by dark-toned, rough-textured lava flows of Late Hesperian age (~3.3 Ga). Fe/Mg phyllosilicates were detected within sedimentary rocks, whereas volcanic rocks contain pyroxene and lack signatures of alteration, in agreement with interpretations made from texture and morphology. In erosional windows, the superimposition of sedimentary rocks by younger volcanic flows enables the estimation of an erosion rate of ~1000 nm yr-1 during the Hesperian period (3.3–3.7 Ga). Thus, our study shows that an intense sedimentary cycle occurred on the northern rim of the Hellas basin before and during the Late Noachian, leading to the formation of widespread sedimentary plains, which were then eroded, in agreement with a gradual change in the climatic conditions in this period, and later covered by volcanic flows.
Published: 14 November 2016
23-Sep-2019 08:51 UT

ShortUrl Portlet

Shortcut URL