Publication archive

Publication archive

Context. The Rosetta magnetometer RPC-MAG has been exploring the plasma environment of comet 67P/Churyumov-Gerasimenko since August 2014. The first months were dominated by low-frequency waves which evolved into more complex features. However, at the end of July 2015, close to perihelion, the magnetometer detected a region that did not contain any magnetic field at all.
Aims. These signatures match the appearance of a diamagnetic cavity as was observed at comet 1P/Halley in 1986. The cavity here is more extended than previously predicted by models and features unusual magnetic field configurations, which need to be explained.
Methods. The onboard magnetometer data were analyzed in detail and used to estimate the outgassing rate. A minimum variance analysis was used to determine boundary normals.
Results. Our analysis of the data acquired by the Rosetta Plasma Consortium instrumentation confirms the existence of a diamagnetic cavity. The size is larger than predicted by simulations, however. One possible explanation are instabilities that are propagating along the cavity boundary and possibly a low magnetic pressure in the solar wind. This conclusion is supported by a change in sign of the Sun-pointing component of the magnetic field. Evidence also indicates that the cavity boundary is moving with variable velocities ranging from 230 − 500 m/s.
Published: 11 March 2016
We present a statistical study of plasmaspheric plumes and ionospheric outflows observed by the Cluster spacecraft near the dayside magnetopause. Plasmaspheric plumes are identified when the low-energy ions (<1 keV) with ~90° pitch angle distributions are observed by the Cluster Ion Spectrometer/Hot Ion Analyzer instrument. The ionospheric outflows are characterized by unidirectional or bidirectional field-aligned pitch angle distributions of low-energy ions observed in the dayside magnetosphere. Forty-three (10%) plasmaspheric plume events and 32 (7%) ionospheric outflow events were detected out of the 442 times that C3 crossed the dayside magnetopause between 2007 and 2009. The occurrence rate of plumes at duskside is significantly higher than that at dawnside. The occurrence rate of outflows shows a weak dawn-dusk asymmetry. We investigate the dependence of the occurrence rates of plumes and ionospheric outflows on geomagnetic activity and on solar wind/interplanetary magnetic field (IMF) conditions. The plume events tend to occur during southward IMF (duskward solar wind electric field) and moderate geomagnetic activity (Kp = 3, -30 ≤ Dst < -10 nT). However, the ionospheric outflow events tend to occur during northward IMF (dawnward solar wind electric field). The ionospheric outflows do not occur when Kp = 0, and the occurrence rate of the ionospheric outflows does not have a clear Dst dependence. Seventy-five percent (46%) of the outflows are observed in the duskside for negative (positive) IMF By. Conversely, 54% (25%) of the outflows are observed in the dawnside for positive (negative) IMF By. Finally, the occurrence rates of both plumes and outflows increase with solar wind dynamic pressure.
Published: 29 February 2016
Earthward propagating plasmoids in the Earth's magnetotail have been observed by satellites. Using a multifluid global magnetosphere simulation, earthward propagating plasmoids are reproduced when ionospheric O+ outflow is included in the global simulation. Controlled simulations show that without ionospheric outflow, the plasmoids generated in the magnetotail during a substorm-steady magnetospheric convection cycle only propagate tailward. With ionospheric outflow, earthward plasmoids can be induced through the modification of magnetotail reconnection at multiple X lines. When multiple X lines form in the magnetotail, plasmoids may be trapped between multiple reconnection sites. When magnetic reconnection rate is reduced at the near-Earth X line by the presence of ionospheric O+, the earthward exhaust flow of reconnection occurring at the midtail X line forces the plasmoid to propagate earthward. The propagation speed and spatial size of the simulated earthward plasmoid are consistent with observations from the Cluster satellites.
Published: 29 February 2016
For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2 cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is <1.8, and its loss tangent is < 3.6 +4.3-2.1 × 10-5. Both results point to a composition dominated by liquid methane rather than ethane. A high methane concentration suggests that Ligeia Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining (< 2.9+0.9-0.9), but we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain washing of the nearby shores. We use these results to produce a low-resolution bathymetry map of the sea. We also estimate the temperature variation of the bulk sea between February 2007 and July 2013 to be <2 K, which provides a constraint on its net evaporative cooling currently being explored in ocean circulation models. Lastly, we suggest a lag in the summer warming of the northern polar terrains.
Published: 25 February 2016

Published online 11 February 2016

Context. Dust jets (i.e., fuzzy collimated streams of cometary material arising from the nucleus) have been observed in situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986, and yet their formation mechanism remains unknown. Several solutions have been proposed involving either specific properties of the active areas or the local topography to create and focus the gas and dust flows. While the nucleus morphology seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller jets (a few meters wide) that connect directly to the nucleus surface.

Aims. We monitored these jets at high resolution and over several months to understand what the physical processes are that drive their formation and how this affects the surface.

Methods. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets and linked them precisely to their sources on the nucleus.

Results. We show here observational evidence that the northern hemisphere jets of comet 67P/Churyumov-Gerasimenko arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features and therefore of the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.

Published: 11 February 2016
Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov–Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 109 kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72–74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.
Published: 04 February 2016
Context. The Gaia project will determine positions, proper motions, and parallaxes for more than one billion stars in our Galaxy. It is known that Gaia's two telescopes are affected by a small but significant variation of the basic angle between them. Unless this variation is taken into account during data processing, e.g. using on-board metrology, it causes systematic errors in the astrometric parameters, in particular a shift in the parallax zero-point. Previously, we suggested an early reduction of Gaia data for the subset of Tycho-2 stars (Tycho-Gaia Astrometric Solution; TGAS).
Aims. We investigate whether quasars can be used to independently verify the parallax zero-point in early data reductions. This is not trivially possible as the observation interval is too short to disentangle parallax and proper motion for the quasar subset.
Methods. We repeat TGAS simulations but additionally include simulated Gaia observations of quasars from ground-based surveys. All observations are simulated with basic angle variations. To obtain a full astrometric solution for the quasars in TGAS we explore the use of prior information for their proper motions.
Results. It is possible to determine the parallax zero-point for the quasars with a few μas uncertainty, and it agrees to a similar precision with the zero-point for the Tycho-2 stars. The proposed strategy is robust even for quasars exhibiting significant spurious proper motion due to a variable source structure, or when the quasar subset is contaminated with stars misidentified as quasars.
Conclusions. Using prior information about quasar proper motions we could provide an independent verification of the parallax zero-point in early solutions based on less than one year of Gaia data.
Published: 21 January 2016
Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
Published: 14 January 2016
The focal plane array of the Euclid VIS instrument comprises 36 large area, back-illuminated, red-enhanced CCD detectors (designated CCD 273). These CCDs were specified by the Euclid VIS instrument team in close collaboration with ESA and e2v technologies. Prototypes were fabricated and tested through an ESA pre-development activity and the contract to qualify and manufacture flight CCDs is now underway. This paper describes the CCD requirements, the design (and design drivers) for the CCD and package, the current status of the CCD production programme and a summary of key performance measurements.
Published: 24 July 2014

This document presents the proposed activities to be initiated in 2016 in the Exploration Technology Programme (ETP, funded by MREP-2). It also summaries the current state of MREP-2 Programme's technology programme as a whole, providing an overview of all running and proposed Technology Development Activities supporting the implementation of the Programme.

This document is provided for information only and is subject to future updates.

Version issued December 2015: Download document (pdf, 2.9 MB)

Published: 18 December 2015
Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1–1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3–5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.
Published: 14 December 2015
We present a new method to test the ΛCDM cosmological model and to estimate cosmological parameters based on the nonlinear relation between the ultraviolet and X-ray luminosities of quasars. We built a data set of 1138 quasars by merging several samples from the literature with X-ray measurements at 2 keV and SDSS photometry, which was used to estimate the extinction-corrected 2500 Å flux. We obtained three main results: (1) we checked the nonlinear relation between X-ray and UV luminosities in small redshift bins up to z~6, confirming that the relation holds at all redshifts with the same slope; (2) we built a Hubble diagram for quasars up to z~6, which is well matched to that of supernovae in the common z = 0–1.4 redshift interval and extends the test of the cosmological model up to z~ 6; and (3) we showed that this nonlinear relation is a powerful tool for estimating cosmological parameters. Using the present data and assuming a ΛCDM model, we obtain ΩM = 0.22-0.08+0.10 and ΩΛ= 0.92-0.30+0.18M = 0.28 ± 0.04 and ΩΛ = 0.73 ± 0.08 from a joint quasar-SNe fit). Much more precise measurements will be achieved with future surveys. A few thousand SDSS quasars already have serendipitous X-ray observations from Chandra or XMM-Newton, and at least 100,000 quasars with UV and X-ray data will be made available by the extended ROentgen Survey with an Imaging Telescope Array all-sky survey in a few years. The Euclid, Large Synoptic Survey Telescope, and Advanced Telescope for High ENergy Astrophysics surveys will further increase the sample size to at least several hundred thousand. Our simulations show that these samples will provide tight constraints on the cosmological parameters and will allow us to test for possible deviations from the standard model with higher precision than is possible today.
Published: 03 December 2015
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 105−107 kelvin, known as the warm–hot intergalactic medium. There have been previous claims of the detection of warm–hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm–hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 107 kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5–10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
Published: 03 December 2015
[ESA Brochure BR-328] SOHO, the ESA-NASA Solar and Heliospheric Observatory, is studying the Sun, from its deep core to the hot and dynamic outer atmosphere, the solar wind and solar energetic particles. This brochure presents some science highlights marking twenty years of the mission.
Published: 02 December 2015
ESA's LISA Pathfinder will help to open up a completely new observational window into the 'gravitational Universe', proving new technologies needed to measure gravitational waves in space. This article, by Claudia Mignone, explains how.
Published: 27 November 2015
The Terra Sirenum region of Mars is thought to have hosted the Eridania paleolake during the Late Noachian/Early Hesperian, and it offers an insight into the regional aqueous history of Mars. We focus on four basins, including Atlantis, Simois, Caralis, and an unnamed basin. They are hypothesized to have hosted isolated lakes after the drainage of the Eridania Lake. We produced a geologic map and derived model absolute ages of our main mapped units. The map and model ages enable us to interpret the geologic history of the region. The basin floors are covered by light-toned materials containing Fe/Mg-phyllosilicates. Across most of the region, the Electris unit covers the highlands and is eroded into mesas. The deposition of this unit corresponds to air fall and/or fluvial mechanisms that transported the material into the basins and accumulated it on the plateaus and basin floors and rims. The deposits on the basin floors were later degraded into light-toned knobs that are rich in Fe/Mg-phyllosilicates. On the rim of the Simois and the unnamed basins, a sequence of Al-phyllosilicates on top of Fe/Mg-phyllosilicates has been observed. These Al-phyllosilicate-rich materials may have been formed by pedogenic leaching. The presence of chloride in the area suggests that a playa environment prevailed during the last stage of water presence or after desiccation of the lakes. In the Early Amazonian, the last aqueous activity cemented the postlacustrine air fall deposits in the basins and shows that liquid water was present in Terra Sirenum long after the Noachian.
Published: 20 November 2015

This media kit contains background information of use to journalists and reporters covering the LISA Pathfinder mission.

Topics covered:
Why LISA Pathfinder?
Mission at a glance
A challenging build
What LISA Pathfinder is doing and how
Paving the way for gravitational-wave observatories in space
100 years of general relativity
LISA Pathfinder in the context of great physics experiments

There are also contact details for members of the LISA Pathfinder team and press officers for the agencies and institutes involved.

Updated in June 2016 to reflect the detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and to account for operational milestones of LISA Pathfinder.

Published: 27 November 2015
Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s−1 , detected at X-ray high spectral resolution (E/ΔE ~ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.
Published: 06 November 2015

Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions.

Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P.

Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km²), with a global number density of nearly 100/km² and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff.

[Remainder of abstract truncated due to character limitations]

Published: 30 October 2015

Context. Here we describe a new model of the dust streams of comet 67P/Churyumov-Gerasimenko that has been developed using the Interplanetary Meteoroid Environment for Exploration (IMEX). This is a new universal model for recently created cometary meteoroid streams in the inner solar system.

Aims. The model can be used to investigate characteristics of cometary trails: here we describe the model and apply it to the trail of comet 67P/Churyumov-Gerasimenko to develop our understanding of the trail and assess the reliability of the model.

Methods. Our IMEX model provides trajectories for a large number of dust particles released from ~400 short-period comets. We use this to generate optical depth profiles of the dust trail of comet 67P/Churyumov-Gerasimenko and compare these to Spitzer observations of the trail of this comet from 2004 and 2006.

Results. We find that our model can match the observed trails if we use very low ejection velocities, a differential size distribution index of α ≈ -3.7, and a dust production rate of 300–500 kg s-1 at perihelion. The trail is dominated by mm-sized particles and can contain a large proportion of dust produced before the most recent apparition. We demonstrate the strength of IMEX in providing time-resolved histories of meteoroid streams. We find that the passage of Mars through the stream in 2062 creates visible gaps. This indicates the utility of this model in providing insight into the dynamical evolution of streams and trails, as well as impact hazard assessment for spacecraft on interplanetary missions.

Published: 30 October 2015
18-Jan-2021 18:01 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW