Publication archive

Publication archive

Published online in Science Express, 7 April 2011.

Initial images of Venus's South Pole by the Venus Express mission showed the presence of a bright, highly variable vortex, similar to that at the planet's North Pole. Using high-resolution infrared measurements of polar winds from the Venus Express's Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a centre of rotation displaced from the geographic South Pole by ~3 degrees of latitude, and which drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

Published: 08 April 2011
Using the SPICAV-UV spectrometer aboard Venus Express in nadir mode, we were able to derive spectral radiance factors in the middle atmosphere of Venus in the 170-320 nm range at a spectral resolution of R ~ 200 during 2006 and 2007 in the northern hemisphere. By comparison with a radiative transfer model of the upper atmosphere of Venus, we could derive column abundance above the visible cloud top for SO2 using its spectral absorption bands near 280 and 220 nm. SO2 column densities show large temporal and spatial variations on a horizontal scale of a few hundred kilometers. Typical SO2 column densities at low latitudes (up to 50°N) were found between 5 and 50 micron-atm, whereas in the northern polar region SO2 content was usually below 5 micron-atm. The observed latitudinal variations follow closely the cloud top altitude derived by SPICAV-IR and are thought to be of dynamical origin. Also, a sudden increase of SO2 column density in the whole northern hemisphere has been observed in early 2007, possibly related to a convective episode advecting some deep SO2 into the upper atmosphere.
Published: 15 January 2011
The sulphur cycle plays fundamental roles in the chemistry and climate of Venus. Thermodynamic equilibrium chemistry at the surface of Venus favours the production of carbonyl sulphide and to a lesser extent sulphur dioxide. These gases are transported to the middle atmosphere by the Hadley circulation cell. Above the cloud top, a sulphur oxidation cycle involves conversion of carbonyl sulphide into sulphur dioxide, which is then transported further upwards. A significant fraction of this sulphur dioxide is subsequently oxidized to sulphur trioxide and eventually reacts with water to form sulphuric acid. Because the vapour pressure of sulphuric acid is low, it readily condenses and forms an upper cloud layer at altitudes of 6070 km, and an upper haze layer above 70 km, which effectively sequesters sulphur oxides from photochemical reactions. Here we present simulations of the fate of sulphuric acid in the Venusian mesosphere based on the Caltech/JPL kinetics model, but including the photolysis of sulphuric acid. Our model suggests that the mixing ratios of sulphur oxides are at least five times higher above 90 km when the photolysis of sulphuric acid is included. Our results are inconsistent with the previous model results but in agreement with the recent observations using ground-based microwave spectroscopy and by Venus Express.
Published: 01 November 2010
The sulphur cycle plays fundamental roles in the chemistry and climate of Venus. Thermodynamic equilibrium chemistry at the surface of Venus favours the production of carbonyl sulphide and to a lesser extent sulphur dioxide. These gases are transported to the middle atmosphere by the Hadley circulation cell. Above the cloud top, a sulphur oxidation cycle involves conversion of carbonyl sulphide into sulphur dioxide, which is then transported further upwards. A significant fraction of this sulphur dioxide is subsequently oxidized to sulphur trioxide and eventually reacts with water to form sulphuric acid. Because the vapour pressure of sulphuric acid is low, it readily condenses and forms an upper cloud layer at altitudes of 60-70 km, and an upper haze layer above 70 km (ref. 9), which effectively sequesters sulphur oxides from photochemical reactions. Here we present simulations of the fate of sulphuric acid in the Venusian mesosphere based on the Caltech/JPL kinetics model, but including the photolysis of sulphuric acid. Our model suggests that the mixing ratios of sulphur oxides are at least five times higher above 90 km when the photolysis of sulphuric acid is included. Our results are inconsistent with the previous model results but in agreement with the recent observations using ground-based microwave spectroscopy and by Venus Express.
Published: 01 November 2010
A general circulation model (GCM) has been developed for the Venus atmosphere, from the surface up to 100 km altitude, based on the GCM developed for Earth at our laboratory. Key features of this new GCM include topography, diurnal cycle, dependence of the specific heat on temperature, and a consistent radiative transfer module based on net exchange rate matrices. This allows a consistent computation of the temperature field, in contrast to previous GCMs of Venus atmosphere that used simplified temperature forcing. The circulation is analyzed after 350 Venus days (111 Earth years). Superrotation is obtained above roughly 40 km altitude. Below, the zonal wind remains very small compared to observed values, which is a major pending question. The meridional circulation consists of equator-to-pole cells, the dominant one being located within the cloud layers. The modeled temperature structure is globally consistent with observations, though discrepancies persist in the stability of the lowest layers and equator-pole temperature contrast within the clouds (10 K in the model compared to the observed 40 K). In agreement with observational data, a convective layer is found between the base of the clouds (around 47 km) and the middle of the clouds (55-60 km altitude). The transport of angular momentum is analyzed, and comparison between the reference simulation and a simulation without diurnal cycle illustrates the role played by thermal tides in the equatorial region. Without diurnal cycle, the Gierasch-Rossow-Williams mechanism controls angular momentum transport. The diurnal tides add a significant downward transport of momentum in the equatorial region, causing low latitude momentum accumulation.
Published: 13 June 2010

The mapping IR channel of the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS-M) on board the Venus Express spacecraft observes the CO2 band at 4.3 Œm at a spectral resolution adequate to retrieve the atmospheric temperature profiles in the 65-96 km altitude range.

Observations acquired in the period June 2006 - July 2008 were used to derive average temperature fields as a function of latitude, subsolar longitude (i.e.: local time, LT) and pressure. Coverage presented here is limited to the nighttime because of the adverse effects of daytime non-LTE emission on the retrieval procedure, and to southernmost latitudes because of the orientation of the Venus-Express orbit. Maps of air temperature variability are also presented as the standard deviation of the population included in each averaging bin.

At the 100 mbar level (about 65 km above the reference surface) temperatures tend to decrease from the evening to the morning side, despite a local maximum observed around 20-21LT. The cold collar is evident around 65S, with a minimum temperature at 3LT. Moving to higher altitudes, local time trends become less evident at 12.6 mbar (about 75 km) where the temperature monotonically increases from middle-latitudes to the southern pole. Nonetheless, at this pressure level, two weaker local time temperature minima are observed at 23LT and 2LT equatorward of 60S. Local time trends in temperature reverse about 85 km, where the morning side is the warmer.

The variability at the 100 mbar level is maximum around 80S and stronger toward the morning side. Moving to higher altitudes, the morning side always shows the stronger variability. Southward of 60S, standard deviation presents minimum values around 12.6 mbar for all the local times.

Published: 23 June 2010
The questions of whether or not Venus is geologically active and how the planet has resurfaced over the last billion years have major implications for interior dynamics and climate change. Nine 'hot spots', areas analogous to Hawaii with volcanism, broad topographic rises, and large positive gravity anomalies suggesting mantle plumes at depth, have been identified as possibly active. This study uses variations in thermal emissivity of the surface by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the ESA Venus Express spacecraft to identify compositional differences in lava flows at three hot spots. The anomalies are interpreted as a lack of surface weathering. We estimate the flows to be younger than 250 ky, and probably much younger, indicating that Venus is actively resurfacing.
Published: 09 April 2010
Past spacecraft observations of Venus have found considerable spatial and temporal variations of water vapour abundance above the clouds. Previous searches for variability below the clouds at 30-45 km altitude found no large scale latitudinal gradients, but lacked the spatial resolution to detect smaller scale variations. Here we interpret results from the VIRTIS imaging spectrometer on Venus Express, remotely sounding at near-infrared "spectral window" wavelengths, as indicating that the water vapour abundance at 30-40 km altitude varies from 22 to 35 ppmv (±4 ppmv). Furthermore, this variability is correlated with cloud opacity, supporting the hypothesis that its genesis is linked to cloud convection. It is also possible to fit the observations without requiring spatial variation of water abundance, but this places a strong constraint on the spectral dependence of the refractive index data assumed for the lower cloud particles, for which there is as yet no supporting evidence.
Published: 26 January 2010
The Herzberg II system of O2 has been a known feature of Venus' nightglow since the Venera 9 and 10 orbiters detected its c(0)-X(v") progression more than 3 decades ago. We search for its emission at 400 nm-700 nm in spectra obtained with the VIRTIS instrument on Venus Express. Despite the weakness of the signal, integration over a few hours of limb observations of the planet's upper atmosphere reveals the unambiguous pattern of the progression. The selected data sample mainly the northern latitudes within a few hours of local midnight. The emission is ubiquitous on the nightside of Venus and can be discerned at tangent altitudes from 80 km to 110 km. The average emission vertical profiles of the c(0)-X(v") progression and the O2 a(0)-X(0) band, the latter from simultaneous near-infrared spectra, are quite similar, with their respective peaks occurring within ±1 km of each other. We conclude that the net yield for production of the c(0) state is low, ~1%-2% of the oxygen recombination rate, and that O(3P) and CO2 are the two likely quenchers of the Herzberg II nightglow, although CO cannot be ruled out. We also derive a value of 2.45 × 10-16 cm3 s-1 for the rate constant at which CO2 collisionally quenches the c(0) state. Our VIRTIS spectra show hints of O2 A'(0)-a(v3) emission but no traces of the O (1S-1D) green line at 557.7 nm.
Published: 23 December 2009
The solar wind interaction with a planetary atmosphere produces a magnetosphere-like structure near the planet whether or not the planet has an intrinsic global magnetic field. In the case of planets like Venus or Mars, which have no global intrinsic magnetic field but possess a significant atmosphere, a magnetosphere is induced in the highly conducting ionosphere by the time-varying magnetic field carried by the solar wind. The induced magnetosphere at Venus and Mars is almost a "permanent" feature of the solar wind interaction. Here we report a Venus Express observation of the absence of the dayside part of the induced magnetosphere, when the interplanetary magnetic field (IMF) is nearly aligned with the solar wind flow. Using MHD simulations for this extreme IMF orientation, we examine the global interaction of the solar wind with Venus when the magnetic barrier disappears. Furthermore, we estimate the atmospheric loss under this extreme situation. While this solar wind aligned IMF interaction with a planet case is presently rare, and even rarer over solar system history, it might be an appropriate analogue of the interaction of a stellar wind with close-in exoplanet. Thus the solar wind interaction with Venus under this extreme condition might provide us a natural laboratory for studying the evolution of the atmospheres of "hot Jupiters" as well as close-in "terrestrial" planets.
Published: 27 October 2009
Simultaneous observations of Venus by Visible and Infrared Thermal Imaging Spectrometer and Venus Monitoring Camera onboard the Venus Express spacecraft are used to map the cloud top altitude and to relate it to the ultraviolet (UV) markings. The cloud top altitude is retrieved from the depth of CO2 absorption band at 1.6 microns. In low and middle latitudes the cloud top is located at 74 ± 1 km. It decreases poleward of ±50° and reaches 63-69 km in the polar regions. This depression coincides with the eye of the planetary vortex. At the same latitude and hour angle, cloud top can experience fast variations of about 1 km in tens of hours, while larger long-term variations of several kilometers have been observed only at high latitudes. UV markings correlate with the cloud altimetry, however, the difference between adjacent UV dark and bright regions does not exceed several hundred meters. Surprisingly, CO2 absorption bands are often weaker in the dark UV features, indicating that these clouds may be a few hundred meters higher or have a larger scale height than neighboring clouds. Ultraviolet dark spiral arms, which are often seen at about ~70°, correspond to higher altitudes or to the regions with strong latitudinal gradient of the cloud top altitude. Cloud altimetry in the polar region reveals the structure that correlates with the thermal emission maps but is invisible in UV images. This implies that the UV optically thick polar hood is transparent in the near IR.
Published: 14 August 2009
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.
Published: 23 June 2009
The processes in the atmosphere, interior, surface, and near-space environment that together maintain the climate on Venus are examined from the specific point of view of the advances that are possible with new data from Venus Express and improved evolutionary climate models. Particular difficulties, opportunities, and prospects for the next generation of missions to Venus are also discussed.
Published: 21 May 2009
The European Space Agency Venus Express Radio Science experiment (VeRa) obtained 118 radio occultation measurements of the Venusian atmosphere between July 2006 and June 2007. Southern latitudes are uniformly sampled; measurements in the northern hemisphere are concentrated near the pole. Radial profiles of neutral number density derived from the occultations cover the altitude range 40-90 km, which are converted to profiles of temperature (T) and pressure (p) versus height (h). Profiles of static stability are found to be latitude-dependent and nearly adiabatic in the middle cloud region. Below the clouds the stability decreases at high latitudes. At an altitude of 65 km, the VeRa T[p(h)] profiles generally lie between the Venus International Reference Atmosphere (VIRA) and VIRA-2 models; the retrieved temperatures at any given pressure level typically are within 5 K of those derived from the Pioneer Venus Orbiter Radio Occultation experiments. A large equator-to-pole temperature contrast of ~30 K is found at the 1-bar (1000 hPa) level. The VeRa observations reveal a distinct cold collar region in the southern hemisphere, complementing that in the north. At the latitudes of the cold collars, the tropopause altitude increases relative to higher and lower latitudes by ~7 km while the temperature drops roughly 60 K. The observations indicate the existence of a wave number 2 structure poleward of ±75° latitude at altitudes of 62 km.
Published: 24 April 2009
Venus Express is well and healthy and has now been providing exciting new data from Venus, our nearby twin planet, for over 2 years. Many of the new results are presented and discussed in the subsequent papers in this special section. The overall scientific objective of Venus Express is to carry out a detailed study of the atmosphere of Venus, including the interaction of the upper atmosphere with the solar wind and the interaction of the lowest part of the atmosphere with the surface of the planet. In addition, the plasma environment and magnetic fields as well as some aspects of the surface of the planet are addressed. For the first time, investigations make systematic use of the transparent infrared spectral windows in order to probe the atmosphere in four dimensions: three spatial dimensions plus time. The spacecraft design is taken from Mars Express with some modifications necessary owing to the specific environment around Venus. The payload is composed of three spectrometers, a camera, a magnetometer, an instrument for detecting energetic particles, and a radio science package. The orbit is polar and highly elliptic, with a pericenter altitude of about 200 km over the northern polar region and an apocenter altitude of 66,000 km. Presently, the coverage of the southern hemisphere is very good, but important gaps still do exist. The coverage of the northern hemisphere is much less dense. Venus Express is a part of the European Space Agency's program for the exploration of the inner solar system, which includes missions to study the Sun, Mercury, Venus, the Moon, Mars, and comets and asteroids.
Published: 19 March 2009
To date dynamical observations of the Venus clouds have delivered mainly either only short-term or long-term averaged results. With the Venus Monitoring Camera (VMC) it finally became possible to investigate the global dynamics with a relatively high resolution in space and time on a long-term basis. Our findings from manual cloud feature wind tracking in VMC UV image sequences so far show that the details of the mesospheric dynamics of Venus appear to be highly variable. Although the general rotation of the atmosphere remained relatively stable since Mariner 10, more than 30 years ago, by now, there are indications of short-term variations in the general circulation pattern of the Venus atmosphere at cloud top level. In some cases, significant variations in the zonal wind properties occur on a timescale of days. In other cases, we see rather stable conditions over one atmospheric revolution, or longer, at cloud top level. It remains an interesting question whether the irregularly observed midlatitude jets are indeed variable or simply become shielded from view by higher H2SO4 haze layers for varying time intervals. Winds at latitudes higher than 60°S are still difficult to obtain track because of low contrast and scarcity of features but increasing data is being collected. Over all, it was possible to extend latitudinal coverage of the cloud top winds with VMC observations. Thermal tides seem to be present in the data, but final confirmation still depends on synthesis of Visible and Infrared Thermal Imaging Spectrometer and VMC observations on night and dayside. Although poorly resolved, meridional wind speed measurements agree mainly with previous observations and with the presence of a Hadley cell spanning between equatorial region and about 45°S latitude.
Published: 17 March 2009
Some dynamical and morphological similarities exist between the vortex organization of the atmosphere in the northern and southern hemispheres of Venus and the tropical cyclones/hurricanes on Earth. An S-shape feature detected in the center of the vortices on Venus from Pioneer Venus Orbiter and Venus Express observations has also been seen in tropical cyclones. This feature can be simulated with an idealized nonlinear and non-divergent barotropic model and, like in the vortices on Venus and in tropical cyclones, it is found to be transient. Given the challenges in measuring the deep, atmospheric circulation of Venus, the morphological similarities provide clues toward understanding the processes involved in the maintenance of Venus' atmospheric super rotation.
Published: 25 February 2009

More than 25 spacecraft from the United States and the Soviet Union visited Venus in the 20th century, but in spite of the many successful measurements they made, a great number of fundamental problems in the physics of the planet remained unsolved [Taylor, 2006; Titov et al., 2006]. In particular, a systematic and long-term survey of the atmosphere was missing, and most aspects of atmospheric behavior remained puzzling. After the Magellan radar mapping mission ended in 1994, there followed a hiatus of more than a decade in Venus research, until the European Space Agency took up the challenge and sent its own spacecraft to our planetary neighbor. The goal of this mission, Venus Express, is to carry out a global, long-term remote and in situ investigation of the atmosphere, the plasma environment, and some aspects of the surface of Venus from orbit [Titov et al., 2001; Svedhem et al., 2007].

Venus Express continues and extends the investigations of earlier missions by providing detailed monitoring of processes and phenomena in the atmosphere and near-space environment of Venus. Radio, solar, and stellar occultation, together with thermal emission spectroscopy, sound the atmospheric structure in the altitude range from 150 to 40 km with vertical resolution of few hundred meters, revealing strong temperature variations driven by radiation and dynamical processes.

- The remainder of the abstract is truncated -

Published: 17 December 2008
When seen in ultraviolet light, Venus has contrast features that arise from the non-uniform distribution of unknown absorbers within the sulphuric acid clouds and seem to trace dynamical activity in the middle atmosphere. It has long been unclear whether the global pattern arises from differences in cloud top altitude (which was earlier estimated to be 66-72 km), compositional variations or temperature contrasts. Here we report multi-wavelength imaging that reveals that the dark low latitudes are dominated by convective mixing which brings the ultraviolet absorbers up from depth. The bright and uniform mid-latitude clouds reside in the 'cold collar', an annulus of cold air characterized by 30 K lower temperatures with a positive lapse rate, which suppresses vertical mixing and cuts off the supply of ultraviolet absorbers from below. In low and middle latitudes, the visible cloud top is located at a remarkably constant altitude of 72±1 km in both the ultraviolet dark and bright regions, indicating that the brightness variations result from compositional differences caused by the colder environment rather than by elevation changes. The cloud top descends to 64 km in the eye of the hemispheric vortex, which appears as a depression in the upper cloud deck. The ultraviolet dark circular streaks enclose the vortex eye and are dynamically connected to it.
Published: 04 December 2008

Beyond their intrinsic interest, ground-based observations have proven their usefulness in supporting spacecraft observations of Solar System bodies. Probably the most spectacular illustration ever was provided during the descent of the Huygens Probe on Titan, when the radio astronomy segment detected the "channel A" carrier signal from Huygens and allowed the recovery of the Doppler Wind Experiment that had been compromised by the failure of the corresponding Cassini channel (Lebreton et al., 2005). Furthermore, ground-based science observations performed during or around the Huygens mission provided new, complementary information on Titan's atmosphere and surface, helping to put the Huygens observations into context (Witasse et al., 2006). Another example of a successful ground-based campaign is the Deep Impact event, when numerous Earth-based and Earth-orbiting observatories monitored comet 9P/Tempel 1 when it was hit by the impactor (Meech et al., 2005).

- The remainder of the abstract is truncated -

Published: 16 August 2008
— 20 Items per Page
Showing 21 - 40 of 75 results.
31-May-2020 08:01 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/YwN7ZBW