Publication archive

Publication archive

This paper describes a general-purpose algorithm for computing the gradients in space and time of a scalar field, a vector field, or a divergence-free vector field, from in situ measurements by one or more spacecraft. The algorithm provides total error estimates on the computed gradient, including the effects of measurement errors, the errors due to a lack of spatio-temporal homogeneity, and errors due to small-scale fluctuations. It also has the ability to diagnose the conditioning of the problem. Optimal use is made of the data, in terms of exploiting the maximum amount of information relative to the uncertainty on the data, by solving the problem in a weighted least-squares sense. The method is illustrated using Cluster magnetic field and electron density data to compute various gradients during a traversal of the inner magnetosphere. In particular, Cluster is shown to cross azimuthal density structure, and the existence of field-aligned currents in the plasmasphere is demonstrated.
Published: 09 May 2007
Most regions of the Jovian magnetosphere covered by the Galileo spacecraft measurements undergo quasi-periodic modulations with a time period of several Earth days. These modulations appear in various field and particle properties. Most prominent are periodically recurring ion flow bursts associated with disturbances in the meridional component of the magnetic field in the Jovian magnetotail or variations of the energy spectral shape of the particle distribution associated with the stretching and dipolarization of the magnetic field. Each individual cycle of these modulations is believed to represent a global reconfiguration of the Jovian magnetosphere. We present a simple conceptual model for these periodic processes assuming (1) ion mass loading from internal plasma sources and (2) fast planetary rotation causing magnetotail field line stretching due to centrifugal forces. This leads to a magnetotail configuration favoring magnetic reconnection. Magnetic reconnection causes plasmoid formation and release as well as dipolarization of field lines connected to the planet. Continued mass loading leads again to a stretching of the tail field lines. Our model shows that the suggested intrinsic mechanism can explain the observed periodicities of several days in Jovian substorm-like processes.
Published: 06 May 2007
Multispacecraft measurements in the solar wind are used to determine the field-aligned anisotropy of magnetohydrodynamic inertial range turbulence. The ratio of the parallel to perpendicular correlation lengths is measured by using time-lagged two-point correlations to construct a spatial autocorrelation function. The mean ratio obtained, 1.79 +- 0.36, is significantly greater than unity and therefore consistent with solar wind fluctuations being anisotropic with energy predominantly in wavevectors perpendicular to the large-scale mean magnetic field. In analyzing eight 40-60 minute intervals of multipoint magnetic field data from the four Cluster spacecraft, the degree of variation in the ratio of the parallel to perpendicular correlation lengths about the mean was larger than expected. This variation does not appear to be correlated with the solar wind velocity or the plasma beta. The ratio of parallel to perpendicular correlation lengths was also uncorrelated between different field components.
Published: 01 May 2007
We investigate in detail the breakdown of the frozen-in condition detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail during a substorm expansion on 22 August 2001. It is found that the breakdown occurred (1) in a low-density environment with moderate to large proton plasma flow and significant fluctuations in electric and magnetic fields, (2) in regions with predominantly dissipation but occasionally dynamo effect, and (3) at times simultaneously at two Cluster satellites separated by more than 1000 km in both X- and Z-directions. Evaluation of the terms in the generalized Ohm's law indicates that the anomalous resistivity contribution arising from field fluctuations during this event is the most significant, followed by the Hall, electron viscosity, and inertial contributions in descending order of importance. This result demonstrates for the first time from observations that anomalous resistivity from field fluctuations (implying kinetic instabilities) can play a substantial role in the breakdown of the frozen-in condition in the magnetotail during substorm expansions. Consideration of several observed features in the breakdown regions indicates that the breakdown occurs in a turbulent site resembling observed features found in current disruption and dipolarization sites.
Published: 29 April 2007
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF-Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.
Published: 20 April 2007
The electric-field-induced acceleration of ions in current sheets in a collisionless plasma is investigated. The analysis of nonadiabatic ion dynamics provides a universal property of the ion acceleration mechanism, which is independent of the magnetic-field model and the initial particle distribution function. The width of the resonance region is estimated. The theoretical results are compared with the experimental and numerical simulation data.
Published: 16 April 2007
In the April issue of Physics World, Katariina Nykyri reveals how the European Space Agency's Cluster mission, which consists of four identical satellites flying in an elliptical polar orbit around the Earth, has been providing physicists with a 3D map of the structure and dynamics of the plasma surrounding the Earth. Such data could improve our understanding of geomagnetic storms and could even make fusion energy a reality.
Published: 03 April 2007
Unusual wave activity in the Pc 1-2 frequency band (0.1-5 Hz) was observed by the Cluster spacecraft in association with the two large geomagnetic storms of late 2003. During the onset of the Halloween storm on October 29, 2003, intense broadband activity between ~0.1 and 0.6 Hz appeared at all 4 spacecraft on both sides of the magnetic equator at perigee (near 1400 UT and 08:45 MLT). Power was especially strong and more structured in frequency in the compressional component: a minimum in wave power was observed at 0.38 Hz, corresponding to the oxygen ion cyclotron frequency. Poynting vector calculations indicated that wave power was primarily directed radially inward rather than along the magnetic field. Narrowband purely compressional waves near 0.15 Hz appeared at higher dayside latitudes in the southern hemisphere. CIS ion spectrometer data during this pass revealed that O+ was the dominant energetic ion. During the recovery phase of the November storm, on November 22, 2003, predominantly transverse 1.8 Hz waves with peak-to-peak amplitude of 10 nT were observed by all four spacecraft near perigee at L=4.4. During this more typical Pc 1 event, wave power was directed along B, toward the northern ionosphere. An unusually polarized 2.3 Hz emission (with power in the radial and compressional, but not azimuthal directions) was observed at L=5.4-5.9, 10-15° south of the magnetic equator. - Remainder of abstract truncated -
Published: 02 March 2007
The article appears translated to English in the Journal of Experimental and Theoretical Physics (JETP) Letters.
Published: 02 March 2007
Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.
Published: 30 March 2007
Non-thermal continuum (NTC) radiation is, with auroral kilometric radiation (AKR), one of the two electromagnetic emissions generated within the Earth's magnetosphere and radiated into space. The location of the source of NTC has been sought for several decades, with only limited success. The constellation formed by the four CLUSTER spacecraft provides the possibility of triangulation in the vicinity of the source, thus allowing progress in source localisation, while simultaneously revealing the beaming properties of NTC radio sources. We present a case event showing two beams localised on opposite sides of the magnetic equator. At any selected frequency, triangulation points to a single region source of small size. Its position is compatible with the range of possible loci of sources predicted by the radio window theory of Jones (1982) in a frame of constraints relaxed from the simple sketch proposed in early works. The analysis of similar observations from the Dynamics Explorer 1 by Jones et al. (1987) enabled the authors to claim validation of the radio window theory. CLUSTER observations, however, reveal a large beaming cone angle projected onto the ecliptic plane, a feature unobservable by Dynamics Explorer which had a different spin axis orientation. According to the radio window theory, such a large observed cone angle can only be formed by a series of point sources, each beaming in a narrow cone angle. This study demonstrates the difficulty of validating NTC linear generation mechanisms using global beaming properties alone.
Published: 30 March 2007
Addressing the origin of the energetic particle injections into the inner magnetosphere, we investigate the 23 February 2004 substorm using a favorable constellation of four Cluster (near perigee), LANL and Geotail spacecraft. Both an energy-dispersed and a dispersionless injection were observed by Cluster crossing the plasma sheet horn, which mapped to 9-12 RE in the equatorial plane close to the midnight meridian. Two associated narrow equatorward auroral tongues/streamers propagating from the oval poleward boundary could be discerned in the global images obtained by IMAGE/WIC. As compared to the energy-dispersed event, the dispersionless injection front has important distinctions consequently repeated at 4 spacecraft: a simultaneous increase in electron fluxes at energies ~1..300 keV, ~25 nT increase in BZ and a local increase by a factor 1.5-1.7 in plasma pressure. The injected plasma was primarily of solar wind origin. We evaluated the change in the injected flux tube configuration during the dipolarization by fitting flux increases observed by the PEACE and RAPID instruments, assuming adiabatic heating and the Liouville theorem. Mapping the locations of the injection front detected by the four spacecraft to the equatorial plane, we estimated the injection front thickness to be ~1 RE and the earthward propagation speed to be ~200-400 km/s (at 9-12 RE). Based on observed injection properties, we suggest that it is the underpopulated flux tubes (bubbles with enhanced magnetic field and sharp inner front propagating earthward), which accelerate and transport particles into the strong-field dipolar region.
Published: 30 March 2007
Magnetic reconnection is a universal process leading to energy conversion in plasmas. It occurs in the Solar System, in laboratory plasmas and is important in astrophysics. Reconnection has been observed so far only at large-scale boundaries between different plasma environments. It is not known whether reconnection occurs and is important in turbulent plasmas where many small-scale boundaries can form. Solar and laboratory measurements as well as numerical simulations indicate such possibility. Here we report, for the first time, in situ evidence of reconnection in a turbulent plasma. The turbulent environment is the solar wind downstream of the Earth's bow shock. We show that reconnection is fast and electromagnetic energy is converted into heating and acceleration of particles. This has significant implications for laboratory and astrophysical plasmas where both turbulence and reconnection should be common.
Published: 25 March 2007
A set of experimental data is presented for a high-Mach-number (Mf = 5) quasiperpendicular (thetaBn = 81 degrees) bow shock layer crossed by Cluster spacecraft on 24 January 2001 at 07:05-07:09 UT. The measurements of magnetic field, spectra of electric field fluctuations, and ion distributions reveal that the shock is highly nonstationary. In particular, the magnetic field profiles measured aboard different spacecraft differ considerably from each other. The mean frequency of downshifted waves observed upstream of the shock ramp oscillates with a characteristic time comparable with the proton gyroperiod. In addition, the reflection of ions from the shock is bursty and a characteristic time for this process is also comparable with the ion gyroperiod. All of these features in conjunction are the first convincing experimental evidence in favor of the shock front reformation.
Published: 09 March 2007
The shock arrival of an Interplanetary Coronal Mass Ejection (ICME) at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<-100 nT) geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km) was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF) was dominantly northward (Bz>25 nT) with a strong duskward component (By>15 nT) resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.
Published: 08 March 2007
ESA's fleet of four Cluster satellites was launched in 2000 to investigate the magnetic interaction between the Sun and Earth. Designed to last 3 years, the mission has now been extended to the end of 2009. But the batteries of the satellites are well beyond their design lives and are starting to fail - the power situation first became critical during the long eclipses in September 2006. The battery aboard one could not power the heaters or computer, so new options had to be developed to avoid dangerous low temperatures and to regain control after each eclipse.
Published: 15 February 2007
Observations of a Flux Transfer Event (FTE) signature at the dayside magnetopause are reported, which was consecutively observed on 4 January 2005 by both the Double Star/TC1 spacecraft and the Cluster quartet, while the spacecraft were traversing through the northern-dusk magnetopause. The event occurred as a magnetosheath FTE first at the Cluster spacecraft at about 07:13 UT on 4 January 2005 and crossed each of the others within 2 minutes. The spatial separations between the Cluster spacecraft were of the order of 200 km. The TC1 signature occurred about 108s after Cluster. All findings including magnetic fluxes, orientations and hot ion velocity distributions strongly suggest that Cluster and TC1 encountered the magnetosheath branch of the same flux tube at two different positions along its length and this is borne out by computation of the expected time delay. Four-spacecraft timing is used to obtain the velocity of FTE.
Published: 08 February 2007
We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. -- abstract truncated --
Published: 01 February 2007
Using Cluster multipoint magnetic and plasma measurements we analyze the spatial structure of plasma flow-associated turbulence on 26 September 2005. The fortunate relative configuration of the spacecraft and the plasma flow allowed for the first time to compare the scale evolution of statistical moments both at the boundary and in the central part of the flow at the same time. The simultaneous increase of skewness and kurtosis at the boundary of the plasma flow over the time scale of seconds provides evidence for the existence of nonlocal coupling in flow-associated turbulence in the Earth's plasma sheet.
Published: 01 February 2007
During the last 30 years, several magnetospheric missions have recorded the presence of narrow proton structures in the ring current region. These structures have been referred as "nose-like" structures, due to their appearance when represented in energy-time spectrograms, characterized by a flux value increase for a narrow energy range. Cluster's polar orbit, with a 4 RE perigee, samples the ring current region. The ion distribution functions obtained in-situ by the CIS experiment (for energies of ~5 eV/q to 40 keV/q) reveal the simultaneous presence of several (up to 3) narrow nose-like structures. A statistical study (over one year and a half of CIS data) reveals that double nose structures are preferentially observed in the post-midnight sector. Also, the characteristic energy of the nose (the one observed at the lower energy range when several noses occur simultaneously) reveals a clear MLT dependence during quiet events (Kp<2): a sharp transition in the energy range occurs in the pre-noon sector. Moreover, the multi-nose structures (up to 3 simultaneous noses) appear regardless of the magnetospheric activity level and/or the MLT sector crossed by the spacecraft. Numerical simulations of particles trajectories, using large-scale electric and magnetic field models are also presented. Most of the features have been accurately reproduced (namely the single and double noses), but the triple noses cannot be produced under these conditions and require to consider a more complex electric field model.
Published: 01 February 2007
28-Mar-2020 21:43 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/BAlaNqw