ESA Science & Technology - Publication Archive
Publication archive
Publication archive
[Remainder of abstract truncated due to character limitations]
We present Cluster measurements of large amplitude electric fields correlated with intense downward field-aligned currents, observed during a nightside crossing of the auroral zone. The data are reproduced by a simple model of magnetosphere-ionosphere coupling which, under different conditions, can also produce a divergent electric field signature in the downward current region, or correlation between the electric and perturbed magnetic fields. We conclude that strong electric field associated with intense downward field-aligned current, such as this observation, is a signature of ionospheric plasma depletion caused by the downward current. It is also shown that the electric field in the downward current region correlates with downward current density if a background field is present, e.g., due to magnetospheric convection.
[Remainder of abstract truncated due to character limitations]
[Remainder of abstract truncated, due to character limitations]
We study in detail high-frequency (HF) plasma waves between the electron cyclotron and plasma frequencies within a reconnection diffusion region (DR) encountered by Cluster in the magnetotail using continuous electric field waveforms. We identify three wave types, all observed within the separatrix regions: Langmuir waves (LW), electrostatic solitary waves (ESWs), and electron cyclotron waves (ECWs). This is the first time the ECWs have been observed inside this region. Direct comparison between waveforms and electron distributions are made at the timescale of one energy sweep of the electron detector (125 ms). Based on the wave and electron distribution characteristics, we find that the separatrix region has a stratified spatial structure. The outer part of the region is dominated by LW emissions related to suprathermal electron beams propagating away from the X-line. Furthest in, nearest to the current sheet, we observe ESWs associated with counterstreaming electron populations. Studying HF waveforms allows for a precise mapping of kinetic boundaries in the reconnection region and helps to improve our understanding of the electron dynamics in the DR.