ESA Science & Technology - Publication Archive
Publication archive
Publication archive
This paper summarizes the results of an ESA feasibility study of a Wide-Field Optical Infrared Imager (WFI) that would search for Type Ia supernovae at low redshift with the aim to measure the changing rate of expansion of the universe. WFI multi-spectral images of the deep universe could also benefit to many other research area in astrophysics. The WFI payload includes a 2 m class telescope, a 1 square degree field of view imaging camera and a low-resolution integral field spectrometer. A mission concept was identified that consists of a 2000 kg spacecraft launched by a Soyuz-Fregat into a L2 halo orbit. The WFI mission could benefit from the technology developed for the ESA Herschel and Gaia missions and for the NIRSpec ESA instrument. A fully European WFI mission would require improvement of existing European detector and on-board processor technology as well as some effort to support the utilization of the 26 GHz Ka band.
Technology Reference Studies (TRS) are a technology development tool introduced by ESA's Science Payload and Advanced Concepts Office, whose purpose is to provide a focus for the development of strategically important technologies that are of likely future relevance for scientific missions. This is accomplished through the study of several technologically demanding and scientifically interesting missions, which are currently not part of the ESA science programme.
The goal of the DSR TRS is to study the feasibility and the technologies required to collect a scientifically significant sample of regolith from Deimos' surface and return it to Earth. The DSR mission profile consists of a small spacecraft, launched on a Soyuz-Fregat 2B. After transferring to the Martian system, the spacecraft will enter into a co-orbit with Deimos where it will perform remote sensing observations and ultimately perform a series of sampling manoeuvres. Upon completion of sampling the spacecraft will return to Earth, where the sample canister will perform a direct Earth entry.
This document gives a summary of the work performed within ESA Contract No. 16854/03/NL/HB "Development of a compact Geochemistry Instrument Package Facility (GIPF)". Main objective of this study was the development and assembly of a compact instrument facility for in-situ geochemistry sample analysis in planetary research. Several work packages listed in chapter 2 below have been performed, from the assessment of different geochemistry methods to final testing of the hardware and steps described to achieve a flight model for a given mission. The design was driven by the proposed BepiColombo mission to be used on a lander on planet Mercury. In other words BepiColombo was the "reference mission" for the presented study. The study was lead by von Hoerner & Sulger GmbH, Schwetzingen. Subcontracts to built the spectrometers and the camera have been placed at University of Mainz, Max-Planck-Institut für Chemie, Mainz and DLR, Deutsches Zentrum für Luft- und Raumfahrt e.V., Berlin.
The Venus Entry Probe study is one of the European Space Agency's (ESA) technology reference studies. It aims to identify; the technologies required to develop a low-cost, science-driven mission for in-situ exploration of the atmosphere of Venus, and the philosophy that can be adopted. The mission includes a science gathering spacecraft in an elliptical polar Venus orbit, a relay satellite in highly elliptical Venus orbit, and an atmospheric entry probe delivering a long duration aerobot (aerial robot) which will drop several microprobes during its operational phase.
The atmospheric entry sequence is initiated at 120 km altitude and an entry velocity of 9.8 kms-1. Once the velocity has reduced to 15 ms-1 the aerobot is deployed. This consists of a gondola and balloon and has a floating mass of 32 kg (which includes 8 kg of science instruments and microprobes). To avoid Venus' crushing surface pressure and high temperature an equilibrium float altitude of around 55 km has been baselined. The aerobot will circumnavigate Venus several times over a 15-22 lifetime analysing the Venusian middle cloud layer. Science data will be returned at 2.5 kbps over the mission duration. At scientifically interesting locations 15 drop-sondes will be released.
This paper focuses on the final mission design with particular emphasis on system level trade-offs including the balloon and pressurisation system, communications architecture, power system, design for mission lifetime in a hostile and acidic environment. It discusses the system design, design drivers and presents an overview of the innovative mission-enabling and mission-enhancing technologies.
Significant progress in the definition of the mission concepts and related technology requirements has been achieved since then. At the present time the Planetary Exploration Studies Section of SCI-A has finished the study of the first four TRSs, the Venus Entry Probe (VEP), the Jupiter Minisat Explorer (JME), the Deimos Sample Return (DSR) and the Interstellar Heliopause Probe (IHP). Current study activities are now focusing on the extension of the Jovian Explorer scenario towards magnetospheric and atmospheric investigations by means of additional orbiter(s) and entry probes. New introduced concepts deal with cross-scale constellation (CSM) of up to 12 spacecrafts to further explore the Earth magnetosphere and a Near Earth Asteroid Sample Return (ASR).
All TRS mission profiles are based on small spacecraft, with miniaturized highly integrated payload suites (HIPS) and launched on Soyuz Fregat-2B (SF-2B) as baseline. TRSs are set up to provide thematic context for technology development based on feasible mission concepts, which may be also used by the scientific community as embryonic building blocks for future mission proposals. This paper describes the current status of the new concepts under study (CSM, JEP, ASR) and the final results of the first four TRSs (JME, DSR, VEP and IHP) in further detail.