Asset Publisher

INFO 04-1996: European team gauges a gamma-ray star

INFO 04-1996: European team gauges a gamma-ray star

28 March 1996

Italian astrophysicists have pushed the Hubble Space Telescope to the limit of its powers in finding the distance of Geminga, a pointlike object 500 light-years from the Earth. It is the prototype of a novel kind of star, a radio-silent neutron star, which may be much more common in the Universe than previously supposed. Geminga is so weak in visible light that Hubble had to stare at the spot for more than an hour to register it adequately. The object is nevertheless one of the brightest sources of gamma-rays in the sky, and its output of this very energetic form of radiation can now be accurately gauged.

Italian astrophysicists have pushed the Hubble Space Telescope to the limit of its powers in finding the distance of Geminga, a pointlike object 500 light-years from the Earth. It is the prototype of a novel kind of star, a radio-silent neutron star, which may be much more common in the Universe than previously supposed. Geminga is so weak in visible light that Hubble had to stare at the spot for more than an hour to register it adequately. The object is nevertheless one of the brightest sources of gamma-rays in the sky, and its output of this very energetic form of radiation can now be accurately ganged. Neutron stars, first discovered as radio pulsars in 1967, are fantastic creations of exploding stars, just one step short of a black hole. They are heavier than the Sun yet only about twenty kilometres wide. Made of compressed nuclear matter, they have gravity and magnetic fields many billions of times stronger than on the Earth. With the first direct measurement of the distance of a radio-silent neutron star, astrophysicists can assess Geminga's power and speed of motion.

The astronomical task was like judging the width of a one- franc piece in Paris, seen from the distance of Sicily. Geminga's low brightness greatly aggravated the difficulties. Patrizia Caraveo and her colleagues at the Istituto di Fisica Cosmica in Milan arranged for Hubble's wide-field camera (WFPC2) to make its prolonged observations of Geminga three times. Their findings will be published in Astrophysical Journal Letters on 20 April 1996. Caraveo's co-authors are Giovanni Bignami and Roberto Mignani of Milan, and Laurence Taff of Johns Hopkins University, Maryland. The Italians took advantage of the European Space Agency's collaboration with NASA in the Hubble mission, which gives European astronomers privileged access to the Space Telescope.

Shifts of millionths of a degree

The three sightings of Geminga, made at intervals of six months, revealed small shifts in the position of the faint neutron star. The background of a few brighter but more distant stars displayed by Hubble's camera provided a frame of reference. In the course of a year, Geminga moved northeastwards by 0.17 arc-seconds, equivalent to one degree in 21 000 years. That was due to Geminga's high-speed motion through the Galaxy. But the neutron star also seemed to shift to either side of its interstellar track, because of changes in Hubble's viewpoint as the Earth orbited around the Sun. At opposite seasons, spring and autumn in this case, the Earth is on opposite sides of the Sun, at vantage points 300 million kilometres apart. As a result, the bearings of stars change a little, by the effect called parallax. Nearby stars shift more than very distant stars, and astronomers can measure their distances by trigonometry.

The sideways displacement measured using the Hubble Space Telescope was 0.00636 arc-seconds, less than two millionths of a degree. From this figure the astronomers calculate that Geminga is 512 light-years away (157 parsecs) with an uncertainty of the order of 100 light-years. The strong gamma-rays and weak light observed today left Geminga around the time that Columbus discovered America.

"We are pleased to have measured a parallax for an object at the limit of detection, which was never done before," says Patrizia Caraveo. "But what really matters is that we have pinned down an important object that has puzzled us for more than 20 years."

From "it's not there" to "here it is"

Geminga has tested the patience of the Milanese astronomers for twenty years. NASA's shortlived SAS-2 satellite (1973) first recorded a mysterious source of gamma-rays in the constellation of Gemini. In 1976 Giovanni Bignami named it Geminga. This is a pun signifying either "Gemini gamma" or "gh'è minga" which in the Milanese argot means "it's not there". Geminga lived up to its name when Bignami and his colleagues looked in vain for radio emissions from it.

By 1981, data from ESA's longlived gamma-ray satellite COS-B had defined the position of the gamma-ray source to within half a degree - well enough to prompt renewed efforts to identify it. Radio searches still drew a blank, but in the early 1980s Bignami and others found X-rays coming from Geminga in observations with NASA's Einstein satellite. They narrowed down Geminga's position to within a twentieth of a degree. There was no obvious counterpart to Geminga in visible light. Between 1983 and 1987 the Milanese team hunted for it with large telescopes in Hawaii and Chile. Eventually they selected a very faint object, peculiar in colour, as the visible Geminga. In 1992 a further sighting from Chile established Geminga's rate of movement across the sky.

Meanwhile, the German/US/UK satellite Rosat revealed that Geminga pulsates in X-rays four times a second - every 237 milliseconds to be precise. The same pulsation was found in gamma-rays by NASA's Gamma-Ray Observatory. Bignami and his colleagues then returned to the gamma-ray data from ESA's COS-B. They found the pulsation hidden there too and were able to compute the slowdown in Geminga's pulse-rate. From the slowdown they estimated the age of Geminga at 340 000 years.

The distance measurement completes the gradual transformation of the enigmatic gamma-ray source into a well-characterized object. The Italian team calculates that Geminga is travelling at a speed of at least 120 kilometres per second. The neutron star's radiation in gamma-rays and X-rays is equivalent in energy to ten times the visible light of the Sun. More importantly, the way in which the neutron star distributes its energy output at different wavelengths is now known.

"Neutron stars are radio sources for only a small fraction of their lives," says Giovanni Bignami. "So while we know 700 pulsars, there are probably millions of radio-silent neutron stars like Geminga. Thousands of them may be among X-ray sources already known but so far unidentified. I look forward to searching for new Gemingas with EPIC, our set of X-ray cameras in ESA's XMM satellite due for launch in 1999."

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD.

Patrizia A. Caraveo
Istituto di Fisica Cosmica del CNR, Via Bass 20133 - MILANO (Italy)

Giovanni F. Bignami
Istituto di Fisica Cosmica del CNR, Via Bass - 20133-MILANO (Italy) Dipartimento di Ingegneria Industriale, Univ. of Cassino, CASSINO

Roberto Mignani
Istituto di Fisica Cosmica del CNR, Via Bassini, 20133-MILANO (Italy) Universita di Milano, Italy Laurence G. Taff

Laurence Taff
Department of Physics and Astronomy, JHU, BALTIMORE (MD Research Supported in part by General Observer Grant GO 5484.01-93

Last Update: 1 September 2019
15-Jan-2025 09:49 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/Wye5vgW

Images And Videos

Related Publications

Related Links

Documentation