Asset Publisher

Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds

Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds

Publication date: 21 May 2014

Authors: Planck Collaboration

Journal: Astronomy & Astrophysics
Volume: 565, May 2014
Page: A103
Year: 2014

Copyright: ESO, 2014

Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1°-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5σ) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact H II regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. Peak frequencies are in the range 20−35 GHz except for the California nebula (NGC 1499), which appears to have a high spinning dust peak frequency of (50 ± 17) GHz. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the sub-millimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14−20 K and an average emissivity index, βd, of +1.8, while the non-AME regions are typically warmer, at 20−27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density.
--- Remainder of abstract truncated due to character limitations ---

Link to publication
Last Update: Sep 1, 2019 8:31:31 AM
6-Jun-2020 13:11 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/wNRp04w

Images And Videos

Related Publications

Related Links

See Also

Documentation