Publication archive

Publication archive

First published online 19 August 2015.

The deepest XMM-Newton mosaic map of the central 1°.5 of the Galaxy is presented, including a total of about 1.5 Ms of EPIC-pn cleaned exposures in the central 15 arcsec and about 200 ks outside. This compendium presents broad-band X-ray continuum maps, soft X-ray intensity maps, a decomposition into spectral components and a comparison of the X-ray maps with emission at other wavelengths. Newly discovered extended features, such as supernova remnants (SNRs), superbubbles and X-ray filaments are reported. We provide an atlas of extended features within ±1° of Sgr A*. We discover the presence of a coherent X-ray-emitting region peaking around G0.1−0.1 and surrounded by the ring of cold, mid-IR-emitting material known from previous work as the 'Radio Arc Bubble' and with the addition of the X-ray data now appears to be a candidate superbubble. Sgr A's bipolar lobes show sharp edges, suggesting that they could be the remnant, collimated by the circumnuclear disc, of an SN explosion that created the recently discovered magnetar, SGR J1745−2900. Soft X-ray features, most probably from SNRs, are observed to fill holes in the dust distribution, and to indicate a direct interaction between SN explosions and Galactic centre (GC) molecular clouds. We also discover warm plasma at high Galactic latitude, showing a sharp edge to its distribution that correlates with the location of known radio/mid-IR features such as the 'GC Lobe'. These features might be associated with an inhomogeneous hot 'atmosphere' over the GC, perhaps fed by continuous or episodic outflows of mass and energy from the GC region.

Published: 12 October 2015
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10–60 astronomical units, persisting over intervals of 1–4 years. All these features appear to move away from the star at projected speeds of 4–10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
Published: 09 October 2015
The Hubble 2020: Outer Planet Atmospheres Legacy program is generating new yearly global maps for each of the outer planets. This report focuses on Jupiter results from the first year of the campaign. The zonal wind profile was measured and is in the same family as the Voyager and Cassini era profiles, showing some variation in mid- to high-latitude wind jet magnitudes, particularly at +40° and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, but also shows new internal structures, including a reduced core and new filamentary features. Finally, a wave that was not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.
Published: 08 October 2015
The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the HI and 12CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-H2conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in HI and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ353; the thermal radiance of the large grains; and an estimate of the dust extinction, AVQ, empirically corrected for the starlight intensity. The dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the HI-DNM-CO transitions for five separate clouds. CO-dark H2dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected AVQ extinction largely provides the best fit to the total gas traced by the γ rays.
--- Remainder of abstract truncated due to character limitations ---
Published: 01 October 2015
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
Published: 01 October 2015
The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5′ pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M yr-1. We find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.
Published: 01 October 2015

First published online 28 September 2015

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov–Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov–Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov–Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Published: 29 September 2015
In Press; published online 26 September 2015.

Martian aurorae have been detected with the SPICAM instrument on board Mars Express both in the nadir and the limb viewing modes. In this study, we focus on three limb observations to quantify both the altitudes and the intensities of the auroral emissions. The CO (a³Π - X1Σ) Cameron bands between 190 and 270 nm, the CO (A1Π - X1Σ+) Fourth Positive system (CO 4P) between 135 and 170 nm, the CO2+ (B²Σu+ - X²Πg) doublet at 289 nm, the OI at 297.2 nm and the 130.4 nm OI triplet emissions have been identified in the spectra and in the time variations of the signals. The intensities of these auroral emissions have been quantified and the altitude of the strongest emission of the CO Cameron bands has been estimated to be 137±27 km. The locations of these auroral events have also been determined and correspond to the statistical boundary of open-closed magnetic field lines, in cusp-like structures. The observed altitudes of the auroral emissions are reproduced by a Monte-Carlo model of electron transport in the Martian thermosphere for mono-energetic electrons between 60 and 200 eV. No correlation between electron fluxes measured in the upper thermosphere and nadir auroral intensity has been found. Here, we simulate auroral emissions observed both at the limb and at the nadir using electron energy spectra simultaneously measured with the ASPERA-3/ELS instrument. The simulated altitudes are in very good agreement with the observations. We find that predicted vertically integrated intensities for the various auroral emissions are overestimated, probably as a consequence of the inclination and curvature of the magnetic field line threading the aurora. However, the relative brightness of the CO and CO2+ emissions is in good agreement with the observations.

Published: 27 September 2015
Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.
Published: 26 September 2015
Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov–Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov–Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.
Published: 25 September 2015

This brochure acts as a guide to ESA's Core Technology Programme and how it supports the Cosmic Vision Plan – ESA's mechanism for the long-term planning of space science missions.

The information featured here describes how the science directorate ensures that the technology needed to make these ground-breaking missions a reality is ready when needed. It also outlines the work the Core Technology Programme has already done toward some of the most ambitious missions in ESA's history.

Published: 30 September 2015

Document reference: CDF-154(E)

This document is the assessment study report for CLEP, the Clipper Europa ESA Penetrator mission, which could be a part of the NASA Clipper mission.

As the junior partner to the Clipper mission ESA are considering a potential mission of opportunity that could be considered by the science community in future mission proposals, to either carry out fly-bys of the Jupiter Moon Io — the subject of another study — or Europa, or possibly to impact Europa — the subject of this study.

The assignment was to formulate a penetrator concept, with high velocity impact on Europa and subsurface investigation, including a life detection experiment, for a possible ESA contribution to the NASA Clipper mission and to evaluate its feasibility. Full details are available in the report.

The report has been prepared by the ESA concurrent design facility.

Published: 01 May 2015

Document reference: CDF-154(D)

This document is the assessment study report for CLEO/P, a Jovian moon flyby mission that could be part of the NASA Clipper mission.

As the junior partner to the Clipper mission ESA are considering a potential mission of opportunity that could be considered by the science community in future mission proposals, to either carry out fly-bys of the Jupiter Moon Io — the subject of this study — or Europa, or possibly to impact Europa — the subject of a separate study.

This particular study was performed to formulate a small satellite (250 kg) concept. The main premise was to have this small satellite attached to Clipper during launch and interplanetary transfer and released by Clipper once it arrived at the Jovian system. Full details are available in the report.

The report has been prepared by the ESA concurrent design facility.

Published: 01 May 2015
We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev–Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections.
Published: 26 August 2015
The Ku-band (13.8 GHz – 2.2 cm) RADAR instrument onboard the Cassini-Huygens spacecraft has revealed the richness of the surface of Titan, as numerous seas, lakes, rivers, cryo-volcanic flows and vast dune fields have been discovered. Linear dunes are a major geomorphological feature present on Titan, covering up to 17% of its surface, mainly in equatorial regions. However, the resolution of the RADAR instrument is not good enough to allow a detailed study of the morphology of these features. In addition, other linear wind-related landforms, such as mega-yardangs (linear wind-abraded ridges formed in cohesive rocks), are likely to present a comparable radar signature that could be confused with the one of dunes. We conducted a comparative study of the radar radiometry of both linear dunes and mega-yardangs, based on representative terrestrial analogues: the linear dunes located in the Great Sand Sea in western Egypt and in the Namib Desert in Namibia, and the mega-yardangs observed in the Lut Desert in eastern Iran and in the Borkou Desert in northern Chad. We analysed the radar scattering of both terrestrial linear dunes and mega-yardangs, using high-resolution radar images acquired by the X-band (9.6 GHz – 3.1 cm) sensor of the TerraSAR-X satellite. Variations seen in the radar response of dunes are the result of a contrast between the dune and interdune scattering, while for mega-yardangs these variations are the result of a contrast between ridges and erosion valleys. We tested a simple surface scattering model, with parameters derived from the local topography and surface roughness estimates, to accurately reproduce the radar signal variations for both landforms. It appears that we can discriminate between two types of dunes – bare interdunes as in Egypt and sand-covered interdunes as in Namibia, and between two types of mega-yardangs – young yardangs as in Iran and older ones as in Chad.
--- Remainder of abstract truncated due to character limitations ---
Published: 08 August 2015
The database of the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument between late January 2004 and Mars 2014 has been searched to identify signatures of CO Cameron and CO2+ doublet ultraviolet auroral emissions. This study has almost doubled the number of auroral detections based on SPICAM spectra. Auroral emissions are located in the vicinity of the statistical boundary between open and closed field lines. From a total of 113 nightside orbits with SPICAM pointing to the nadir in the region of residual magnetic field, only nine nightside orbits show confirmed auroral signatures, some with multiple detections along the orbital track, leading to a total of 16 detections. The mean energy of the electron energy spectra measured during concurrent Analyzer of Space Plasma and Energetic Atoms/Electron Spectrometer observations ranges from 150 to 280 eV. The ultraviolet aurora may be displaced poleward or equatorward of the region of enhanced downward electron energy flux by several tens of seconds and shows no proportionality with the electron flux at the spacecraft altitude. The absence of further UV auroral detection in regions located along crustal magnetic field structures where occasional aurora has been observed indicates that the Mars aurora is a time-dependent feature. These results are consistent with the scenario of acceleration of electrons by transient parallel electric field along semiopen magnetic field lines.
Published: 08 August 2015
Albert Einstein's general theory of relativity predicted the existence of ripples in the fabric of space–time called gravitational waves, but so far no experiment has been able to detect them directly. Space offers many advantages in this search, and ESA's LISA Pathfinder mission is a technology demonstrator that will pave the way for future spaceborne gravitational-wave observatories by testing the necessary instrumentation for the first time in that environment.

Table of contents:

  • A quest for silence
  • In the realm of gravity
  • The gravitational Universe
  • How does it work?
  • Building LISA Pathfinder
  • Launch
  • A physics laboratory in space
  • An international enterprise
Published: 01 August 2015
The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface.
Published: 01 August 2015
The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae's final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites.
Published: 01 August 2015

Published online 14 April 2015 in Science Express

Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. Based on magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko, we show that no global magnetic field was detected within the limitations of analysis. The ROMAP suite of sensors measured an upper magnetic field magnitude of less than 2 nT at the cometary surface at multiple locations with the upper specific magnetic moment being < 3.1·10-5 Am2/kg for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P/Churyumov-Gerasimenko is 1.6·108 Am2. We conclude that on the meter-scale, magnetic alignment in the pre-planetary nebula is of minor importance.
Published: 01 August 2015
22-Nov-2019 07:51 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW