Publication archive

Publication archive

Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s−1 , detected at X-ray high spectral resolution (E/ΔE ~ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.
Published: 06 November 2015

Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions.

Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P.

Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km²), with a global number density of nearly 100/km² and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff.

[Remainder of abstract truncated due to character limitations]

Published: 30 October 2015

Context. Here we describe a new model of the dust streams of comet 67P/Churyumov-Gerasimenko that has been developed using the Interplanetary Meteoroid Environment for Exploration (IMEX). This is a new universal model for recently created cometary meteoroid streams in the inner solar system.

Aims. The model can be used to investigate characteristics of cometary trails: here we describe the model and apply it to the trail of comet 67P/Churyumov-Gerasimenko to develop our understanding of the trail and assess the reliability of the model.

Methods. Our IMEX model provides trajectories for a large number of dust particles released from ~400 short-period comets. We use this to generate optical depth profiles of the dust trail of comet 67P/Churyumov-Gerasimenko and compare these to Spitzer observations of the trail of this comet from 2004 and 2006.

Results. We find that our model can match the observed trails if we use very low ejection velocities, a differential size distribution index of α ≈ -3.7, and a dust production rate of 300–500 kg s-1 at perihelion. The trail is dominated by mm-sized particles and can contain a large proportion of dust produced before the most recent apparition. We demonstrate the strength of IMEX in providing time-resolved histories of meteoroid streams. We find that the passage of Mars through the stream in 2062 creates visible gaps. This indicates the utility of this model in providing insight into the dynamical evolution of streams and trails, as well as impact hazard assessment for spacecraft on interplanetary missions.

Published: 30 October 2015
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
Published: 29 October 2015
Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.
Published: 23 October 2015
Interstellar dust (ISD) in the solar system was detected in situ for the first time in 1993 by the Ulysses dust detector. The study of ISD is important for understanding its role in star and solar system formation. The goal of this paper is to understand the variability in the ISD observations from the Ulysses mission by using a Monte Carlo simulation of ISD trajectories, with the final aim to constrain the ISD particle properties from simulations and the data. The paper is part of a series of three: Strub et al. describe the variations of the ISD flow from the Ulysses data set, and Krüger et al. focus on its ISD mass distribution. We describe and interpret the simulations of the ISD flow at Ulysses orbit for a wide range of particle properties and discuss four open issues in ISD research: the existence of very big ISD particles, the lack of smaller ISD particles, the shift in dust flow direction in 2005, and particle properties. We conclude that the shift in the dust flow direction in 2005 can best be explained by Lorentz force in the inner heliosphere, but that an extra filtering mechanism is needed to fit the fluxes. A time-dependent filtering in the outer regions of the heliosphere is proposed for this. Also, the high charge-to-mass ratio values found for the heavier particles after 2003 indicate that these particles are lower in density than previously assumed. This method gives new insights into the ISD properties and paves the way toward getting a complete view on the ISD from the local interstellar cloud. We conclude that in combination with the data and simulations, also impact ionization experiments are necessary using low-density dust, in order to constrain the density of the particles.
Published: 20 October 2015
The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses.
Published: 20 October 2015
In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of "big" interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of νISM∞ = 23.2 km s-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of Rg/d = 193+85-57 and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 km s-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations.
--- Remainder of abstract truncated due to character limitations ---
Published: 20 October 2015
First published online 19 August 2015.

The deepest XMM-Newton mosaic map of the central 1°.5 of the Galaxy is presented, including a total of about 1.5 Ms of EPIC-pn cleaned exposures in the central 15 arcsec and about 200 ks outside. This compendium presents broad-band X-ray continuum maps, soft X-ray intensity maps, a decomposition into spectral components and a comparison of the X-ray maps with emission at other wavelengths. Newly discovered extended features, such as supernova remnants (SNRs), superbubbles and X-ray filaments are reported. We provide an atlas of extended features within ±1° of Sgr A*. We discover the presence of a coherent X-ray-emitting region peaking around G0.1−0.1 and surrounded by the ring of cold, mid-IR-emitting material known from previous work as the 'Radio Arc Bubble' and with the addition of the X-ray data now appears to be a candidate superbubble. Sgr A's bipolar lobes show sharp edges, suggesting that they could be the remnant, collimated by the circumnuclear disc, of an SN explosion that created the recently discovered magnetar, SGR J1745−2900. Soft X-ray features, most probably from SNRs, are observed to fill holes in the dust distribution, and to indicate a direct interaction between SN explosions and Galactic centre (GC) molecular clouds. We also discover warm plasma at high Galactic latitude, showing a sharp edge to its distribution that correlates with the location of known radio/mid-IR features such as the 'GC Lobe'. These features might be associated with an inhomogeneous hot 'atmosphere' over the GC, perhaps fed by continuous or episodic outflows of mass and energy from the GC region.

Published: 12 October 2015
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10–60 astronomical units, persisting over intervals of 1–4 years. All these features appear to move away from the star at projected speeds of 4–10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
Published: 09 October 2015
The Hubble 2020: Outer Planet Atmospheres Legacy program is generating new yearly global maps for each of the outer planets. This report focuses on Jupiter results from the first year of the campaign. The zonal wind profile was measured and is in the same family as the Voyager and Cassini era profiles, showing some variation in mid- to high-latitude wind jet magnitudes, particularly at +40° and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, but also shows new internal structures, including a reduced core and new filamentary features. Finally, a wave that was not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.
Published: 08 October 2015
The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the HI and 12CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-H2conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in HI and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ353; the thermal radiance of the large grains; and an estimate of the dust extinction, AVQ, empirically corrected for the starlight intensity. The dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the HI-DNM-CO transitions for five separate clouds. CO-dark H2dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected AVQ extinction largely provides the best fit to the total gas traced by the γ rays.
--- Remainder of abstract truncated due to character limitations ---
Published: 01 October 2015
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
Published: 01 October 2015
The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5′ pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M yr-1. We find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.
Published: 01 October 2015

First published online 28 September 2015

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov–Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov–Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov–Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Published: 29 September 2015
In Press; published online 26 September 2015.

Martian aurorae have been detected with the SPICAM instrument on board Mars Express both in the nadir and the limb viewing modes. In this study, we focus on three limb observations to quantify both the altitudes and the intensities of the auroral emissions. The CO (a³Π - X1Σ) Cameron bands between 190 and 270 nm, the CO (A1Π - X1Σ+) Fourth Positive system (CO 4P) between 135 and 170 nm, the CO2+ (B²Σu+ - X²Πg) doublet at 289 nm, the OI at 297.2 nm and the 130.4 nm OI triplet emissions have been identified in the spectra and in the time variations of the signals. The intensities of these auroral emissions have been quantified and the altitude of the strongest emission of the CO Cameron bands has been estimated to be 137±27 km. The locations of these auroral events have also been determined and correspond to the statistical boundary of open-closed magnetic field lines, in cusp-like structures. The observed altitudes of the auroral emissions are reproduced by a Monte-Carlo model of electron transport in the Martian thermosphere for mono-energetic electrons between 60 and 200 eV. No correlation between electron fluxes measured in the upper thermosphere and nadir auroral intensity has been found. Here, we simulate auroral emissions observed both at the limb and at the nadir using electron energy spectra simultaneously measured with the ASPERA-3/ELS instrument. The simulated altitudes are in very good agreement with the observations. We find that predicted vertically integrated intensities for the various auroral emissions are overestimated, probably as a consequence of the inclination and curvature of the magnetic field line threading the aurora. However, the relative brightness of the CO and CO2+ emissions is in good agreement with the observations.

Published: 27 September 2015
Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.
Published: 26 September 2015
Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov–Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov–Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.
Published: 25 September 2015

This brochure acts as a guide to ESA's Core Technology Programme and how it supports the Cosmic Vision Plan – ESA's mechanism for the long-term planning of space science missions.

The information featured here describes how the science directorate ensures that the technology needed to make these ground-breaking missions a reality is ready when needed. It also outlines the work the Core Technology Programme has already done toward some of the most ambitious missions in ESA's history.

Published: 30 September 2015

Document reference: CDF-154(E)

This document is the assessment study report for CLEP, the Clipper Europa ESA Penetrator mission, which could be a part of the NASA Clipper mission.

As the junior partner to the Clipper mission ESA are considering a potential mission of opportunity that could be considered by the science community in future mission proposals, to either carry out fly-bys of the Jupiter Moon Io — the subject of another study — or Europa, or possibly to impact Europa — the subject of this study.

The assignment was to formulate a penetrator concept, with high velocity impact on Europa and subsurface investigation, including a life detection experiment, for a possible ESA contribution to the NASA Clipper mission and to evaluate its feasibility. Full details are available in the report.

The report has been prepared by the ESA concurrent design facility.

Published: 01 May 2015
23-May-2024 23:13 UT

ShortUrl Portlet

Shortcut URL