ESA Science & Technology - Publication Archive
Publication archive
Publication archive
![]() |
Table of contents:
- A quest for silence
- In the realm of gravity
- The gravitational Universe
- How does it work?
- Building LISA Pathfinder
- Launch
- A physics laboratory in space
- An international enterprise
Published online 14 April 2015 in Science Express
Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. Based on magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko, we show that no global magnetic field was detected within the limitations of analysis. The ROMAP suite of sensors measured an upper magnetic field magnitude of less than 2 nT at the cometary surface at multiple locations with the upper specific magnetic moment being < 3.1·10-5 Am2/kg for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P/Churyumov-Gerasimenko is 1.6·108 Am2. We conclude that on the meter-scale, magnetic alignment in the pre-planetary nebula is of minor importance.Rosetta is ESA's comet-chasing mission to 67P/Churyumov-Gerasimenko. Launched on 2 March 2004, the spacecraft travelled for 10 years and required three gravity-assist flybys at Earth and one at Mars before homing in on its target.
Comets are time capsules containing primitive material left over from the epoch when the Sun and its planets formed. By studying the gas, dust and structure of the nucleus and organic materials associated with the comet, via both remote and in situ observations, the Rosetta mission could be the key to unlocking the history and evolution of our Solar System.
Table of contents:
- Europe's comet-chaser
- The long trek
- A human endeavour
- Rendezvous with a comet
- Pull-out poster: Rosetta mission selfie
- Landing on a comet
- The Rosetta orbiter
- The Philae lander
- Getting to know the comet
- An evolving story
- An international enterprise
- Join the adventure
--- Remainder of abstract truncated due to character limitations ---
This document presents the results of a study, performed by ESA's Concurrent Design Facility (CDF) in 2014, that analysed the feasibility of a 150 kg-class rover compliant with a potential Mars Sample Return mission and its "FAST" mobility performance requirements. The rover is also able to provide in-situ science for supporting future Mars robotic exploration. For this study, a landing platform delivered by NASA/JPL was considered, in the view of a possible ESA/NASA cooperation in the 2024 timeframe.
![]() |
ESA's Concurrent Design Facility (CDF) have completed a study of a Next Generation-Cryogenic cooled InfraRed Telescope (NG-CryoIRTel). The purpose of this study is to support the European and Japanese science community in defining a post-SPICA mission for the Cosmic Vision M5 call. Full details of the study can be found in this report.
Context.
The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment.
Aims.
During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment.
Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from
image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere.
Results.
We found no unambiguous detections of objects larger than ~6 m within ~20 km and larger than
~1 m between ~20 km and ~110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface.
--- Remainder of abstract truncated due to character limitations ---