Publication archive

Publication archive

Based on a theoretical selection of pulsars as candidates for detection at X-ray energies, we present an analysis of archival X-ray observations performed with Chandra and XMM-Newton of PSR J1747–2958 (the pulsar in the "Mouse" nebula), PSR J2021+3651 (the pulsar in the "Dragonfly" nebula), and PSR J1826–1256. X-ray pulsations from PSR J1747–2958 and PSR J1826–1256 are detected for the first time, and a previously reported hint of an X-ray pulsation from PSR J2021+3651 is confirmed with a higher significance. We analyze these pulsars' spectra in regard to the theoretically predicted energy distribution, finding a remarkable agreement, and provide here a refined calculation of the model parameters taking into account the newly derived X-ray spectral data.
Published: 21 November 2018
The bow shock is the first boundary the solar wind encounters as it approaches planets or comets. The Rosetta spacecraft was able to observe the formation of a bow shock by following comet 67P/Churyumov–Gerasimenko toward the Sun, through perihelion, and back outward again. The spacecraft crossed the newly formed bow shock several times during two periods a few months before and after perihelion; it observed an increase in magnetic field magnitude and oscillation amplitude, electron and proton heating at the shock, and the diminution of the solar wind further downstream. Rosetta observed a cometary bow shock in its infancy, a stage in its development not previously accessible to in situ measurements at comets and planets.
Published: 06 November 2018
The assembly of our Galaxy can be reconstructed using the motions and chemistry of individual stars. Chemo-dynamical studies of the stellar halo near the Sun have indicated the presence of multiple components, such as streams and clumps, as well as correlations between the stars' chemical abundances and orbital parameters. Recently, analyses of two large stellar surveys revealed the presence of a well populated elemental abundance sequence, two distinct sequences in the colour–magnitude diagram and a prominent, slightly retrograde kinematic structure in the halo near the Sun, which may trace an important accretion event experienced by the Galaxy. However, the link between these observations and their implications for Galactic history is not well understood. Here we report an analysis of the kinematics, chemistry, age and spatial distribution of stars that are mainly linked to two major Galactic components: the thick disk and the stellar halo. We demonstrate that the inner halo is dominated by debris from an object that at infall was slightly more massive than the Small Magellanic Cloud, and which we refer to as Gaia–Enceladus. The stars that originate in Gaia–Enceladus cover nearly the full sky, and their motions reveal the presence of streams and slightly retrograde and elongated trajectories. With an estimated mass ratio of four to one, the merger of the Milky Way with Gaia–Enceladus must have led to the dynamical heating of the precursor of the Galactic thick disk, thus contributing to the formation of this component approximately ten billion years ago. These findings are in line with the results of galaxy formation simulations, which predict that the inner stellar halo should be dominated by debris from only a few massive progenitors.
Published: 31 October 2018

Download this interactive media kit to learn more about the launch of BepiColombo on 20 October 2018, the spacecraft's seven year journey to Mercury, and the science goals of the mission.

Contents:
Introduction
Event Programme
Key messages
BepiColombo science themes
From Messenger to BepiColombo
Mercury Planetary Orbiter's science instruments
Mercury Magnetospheric Orbiter's science instruments
Launch and separation timeline
Mercury Transfer Module cameras
Journey to Mercury
Venus flyby science operations
Arrival at Mercury
Operating in extreme environments
Quick look Mercury facts
Principal investigators
Selected images
Selected videos
Media services

Update 10 October 2018: Updated figure on pages 8 and 12
Update 18 October 2018: Inserted new page 11 (MTM cameras), updated figure on pages 8, 9, 13 and 16, changed "MMO-MAG" to "MMO-MGF" throughout, added link to cartoon video, changed email address for University of Leicester contact (page 22)

To download the pdf file (14 MB) click on the image or on the link to publication below.

Published: 10 October 2018
Exomoons are the natural satellites of planets orbiting stars outside our solar system, of which there are currently no confirmed examples. We present new observations of a candidate exomoon associated with Kepler-1625b using the Hubble Space Telescope to validate or refute the moon's presence. We find evidence in favor of the moon hypothesis, based on timing deviations and a flux decrement from the star consistent with a large transiting exomoon. Self-consistent photodynamical modeling suggests that the planet is likely several Jupiter masses, while the exomoon has a mass and radius similar to Neptune. Since our inference is dominated by a single but highly precise Hubble epoch, we advocate for future monitoring of the system to check model predictions and confirm repetition of the moon-like signal.
Published: 04 October 2018
We search for the fastest stars in the subset of stars with radial velocity measurements of the second data release (DR2) of the European Space Agency mission Gaia. Starting from the observed positions, parallaxes, proper motions, and radial velocities, we construct the distance and total velocity distribution of more than 7 million stars in our Milky Way, deriving the full 6D phase space information in Galactocentric coordinates. These information are shared in a catalogue, publicly available at http://home.strw.leidenuniv.nl/ marchetti/research.html. To search for unbound stars, we then focus on stars with a probability greater than 50% of being unbound from the Milky Way. This cut results in a clean sample of 125 sources with reliable astrometric parameters and radial velocities. Of these, 20 stars have probabilities greater than 80 % of being unbound from the Galaxy. On this latter sub-sample, we perform orbit integration to characterize the stars’ orbital parameter distributions. As expected given the relatively small sample size of bright stars, we find no hypervelocity star candidates, stars that are moving on orbits consistent with coming from the Galactic Centre. Instead, we find 7 hyper-runaway star candidates, coming from the Galactic disk. Surprisingly, the remaining 13 unbound stars cannot be traced back to the Galaxy, including two of the fastest stars (around 700 km s−1). If conformed, these may constitute the tip of the iceberg of a large extragalactic population or the extreme velocity tail of stellar streams.
Published: 21 September 2018
The first detected interstellar object 'Oumuamua that passed within 0.25au of the Sun on 2017 September 9 was presumably ejected from a stellar system. We use its newly determined non-Keplerian trajectory together with the reconstructed Galactic orbits of 7 million stars from Gaia DR2 to identify past close encounters. Such an "encounter" could reveal the home system from which 'Oumuamua was ejected. The closest encounter, at 0.60pc (0.53-0.67pc, 90% confidence interval), was with the M2.5 dwarf HIP 3757 at a relative velocity of 24.7km/s, 1Myr ago. A more distant encounter (1.6pc) but with a lower encounter (ejection) velocity of 10.7km/s was with the G5 dwarf HD 292249, 3.8Myr ago. Two more stars have encounter distances and velocities intermediate to these. The encounter parameters are similar across six different non-gravitational trajectories for 'Oumuamua. Ejection of 'Oumuamua by scattering from a giant planet in one of the systems is plausible, but requires a rather unlikely configuration to achieve the high velocities found. A binary star system is more likely to produce the observed velocities. None of the four home candidates have published exoplanets or are known to be binaries. Given that the 7 million stars in Gaia DR2 with 6D phase space information is just a small fraction of all stars for which we can eventually reconstruct orbits, it is a priori unlikely that our current search would find 'Oumuamua's home star system. As 'Oumuamua is expected to pass within 1pc of about 20 stars and brown dwarfs every Myr, the plausibility of a home system depends also on an appropriate (low) encounter velocity.
Published: 26 September 2018
Saturn's moon Titan has a dense nitrogen-rich atmosphere, with methane as its primary volatile. Titan's atmosphere experiences an active chemistry that produces a haze of organic aerosols that settle to the surface and a dynamic climate in which hydrocarbons are cycled between clouds, rain and seas. Titan displays particularly energetic meteorology at equinox in equatorial regions, including sporadic and large methane storms. In 2009 and 2010, near Titan's northern spring equinox, the Cassini spacecraft observed three distinctive and short-lived spectral brightenings close to the equator. Here, we show from analyses of Cassini spectral data, radiative transfer modelling and atmospheric simulations that the brightenings originate in the atmosphere and are consistent with formation from dust storms composed of micrometre-sized solid organic particles mobilized from underlying dune fields. Although the Huygens lander found evidence that dust can be kicked up locally from Titan's surface, our findings suggest that dust can be suspended in Titan's atmosphere at much larger spatial scale. Mobilization of dust and injection into the atmosphere would require dry conditions and unusually strong near-surface winds (about five times more than estimated ambient winds). Such strong winds are expected to occur in downbursts during rare equinoctial methane storms—consistent with the timing of the observed brightenings. Our findings imply that Titan—like Earth and Mars—has an active dust cycle, which suggests that Titan's dune fields are actively evolving by aeolian processes.
Published: 25 September 2018
The evolution of the Milky Way disk, which contains most of the stars in the Galaxy, is affected by several phenomena. For example, the bar and the spiral arms of the Milky Way induce radial migration of stars and can trap or scatter stars close to orbital resonances. External perturbations from satellite galaxies can also have a role, causing dynamical heating of the Galaxy, ring-like structures in the disk and correlations between different components of the stellar velocity. These perturbations can also cause 'phase wrapping' signatures in the disk, such as arched velocity structures in the motions of stars in the Galactic plane. Some manifestations of these dynamical processes have already been detected, including kinematic substructure in samples of nearby stars, density asymmetries and velocities across the Galactic disk that differ from the axisymmetric and equilibrium expectations, especially in the vertical direction, and signatures of incomplete phase mixing in the disk. Here we report an analysis of the motions of six million stars in the Milky Way disk. We show that the phase-space distribution contains different substructures with various morphologies, such as snail shells and ridges, when spatial and velocity coordinates are combined. We infer that the disk must have been perturbed between 300 million and 900 million years ago, consistent with estimates of the previous pericentric passage of the Sagittarius dwarf galaxy. Our findings show that the Galactic disk is dynamically young and that modelling it as time-independent and axisymmetric is incorrect.
Published: 20 September 2018
The Second Small Astronomy Satellite (SAS-2) high-energy (in excess of 35 MeV) gamma-ray telescope has detected pulsed gamma-ray emission at the radio period from PSR 0833-45, the Vela pulsar, as well as an unpulsed flux from the Vela region. The pulsed emission consists of two peaks following the single radio peak by about 13 ms and 48 ms. The luminosity of the pulsed emission above 100 MeV from Vela is about 0.1 that of the pulsar NP 0532 in the Crab nebula, whereas the pulsed emission from Vela at optical wavelengths is less than 0.0002 that from the Crab. The relatively high intensity of the pulsed gamma-ray emission, and the double peak structure, compared with the single pulse in the radio emission, suggest that the high-energy gamma-ray pulsar emission may be produced under different conditions from those at lower energies.
Published: 01 September 1975
Saturn's polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini's reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn's long-lived polar hexagon—which was previously expected to be trapped in the troposphere—can influence the stratospheric temperatures some 300 km above Saturn's clouds.

Open access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Published: 04 September 2018
The young massive Jupiters discovered with high-contrast imaging provide a unique opportunity to study the formation and early evolution of gas giant planets. A key question is to what extent gravitational energy from accreted gas contributes to the internal energy of a newly formed planet. This has led to a range of formation scenarios from ‘cold’ to ‘hot’ start models. For a planet of a given mass, these initial conditions govern its subsequent evolution in luminosity and radius. Except for upper limits from radial velocity studies, disk modelling and dynamical instability arguments, no mass measurements of young planets are yet available to distinguish between these different models. Here, we report on the detection of the astrometric motion of Beta Pictoris, the ~21-Myr-old host star of an archetypical directly imaged gas giant planet, around the system’s centre of mass. Subtracting the highly accurate Hipparcos and Gaia proper motion from the internal 3 yr Hipparcos astrometric data reveals the reflex motion of the star, giving a model-independent planet mass of 11 ± 2 Jupiter masses. This is consistent with scenarios in which the planet is formed in a high-entropy state as assumed by hot start models. The ongoing data collection by Gaia will soon lead to mass measurements of other young gas giants and form a great asset to further constrain early-evolution scenarios.
Published: 21 August 2018
We report the discovery of a flaring X-ray source 7" from the center of the globular cluster NGC 6540 obtained during the EXTraS project devoted to a systematic search for variability in archival data of the XMM-Newton satellite. The source had a quiescent X-ray luminosity on the order of ~1032 erg s-1 in the 0.5–10 keV range (for a distance of NGC 6540 of 4 kpc) and showed a flare lasting about 300 s. During the flare, the X-ray luminosity increased by more than a factor 40, with a total emitted energy of ~1036 erg. These properties, as well as Hubble Space Telescope photometry of the possible optical counterparts, suggest the identification with a chromospherically active binary in the cluster. However, the flare luminosity is significantly higher than what is commonly observed in stellar flares of such a short duration, leaving open the possibility of other interpretations.
Published: 11 August 2018

Document reference: CDF-183(C)

ESA's Concurrent Design Facility (CDF) has completed an assessment study of the Quantum Physics PlatForm: a mission concept to test the quantum superposition principle with "massive" test particles. ESA's Science Directorate requested and managed the study as one of three topics selected for investigation following the "New Science Ideas" call for proposals.

The concept studied was a proposal to perform quantum decoherence measurements with particles of more than 109 atomic mass units.

The main goal of the study was to provide a reference mission design for such a quantum physics experiment, and to inform the community of the ESA process of requirements engineering in view of future calls for missions in ESA's Science Programme.

Published: 01 August 2018
We analyze 10 years of Mars Express total electron content (TEC) data from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument. We describe the spatial, seasonal, and solar cycle behavior of the Martian TEC. Due to orbit evolution, data come mainly from the evening, dusk terminator and postdusk nightside. The annual TEC profile shows a peak at Ls = 25–75° which is not related to the solar irradiance variation but instead coincides with an increase in the thermospheric density, possibly linked with variations in the surface pressure produced by atmospheric cycles such as the CO2 or water cycles. With the help of numerical modeling, we explore the contribution of the ion species to the TEC and the coupling between the thermosphere and ionosphere. These are the first observations which show that the TEC is a useful parameter, routinely measured by Mars Express, of the dynamics of the lower‐upper atmospheric coupling and can be used as tracer for the behavior of the thermosphere.
Published: 19 July 2018
The European Space Agency’s Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter ΛCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1 % (simultaneously), with the best-determined parameter (θ) now known to 0.03 %. We describe the multi-component sky as seen by Planck, the success of the ΛCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
Published: 18 July 2018

Test your memory and get to know the BepiColombo mission and its journey to Mercury.

Download the PDF and print it on your home computer. If you wish to print double-sided you can use the fourth page of the PDF for the back of the cards. Carefully cut out the individual cards.
Use the extra template to create a box to keep your cards safe.

How to play:
Play the game by mixing up the cards and laying them face down on a flat surface. Turn over any two cards. If they match, keep them and have another go, otherwise turn them both back over and it is the next player’s go. (Hint: try to remember which cards your opponent turns over!) The game is over when all the cards have been paired. The player with the most pairs wins. You can also play alone – keep going until you’ve matched all the cards.

Published: 14 July 2018
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera–electronvolts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray–emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
Published: 13 July 2018
12-Nov-2019 19:24 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW