ESA Science & Technology - Publication Archive
Publication archive
Publication archive
We find that the dark knots expand more slowly that the nebular gas, that the distance to the nebula is 720 pc +/- 30 per cent, and the dynamic age of the Ring Nebula is about 4000 yrs. The dynamic age is in agreement with the position of the central star on theoretical curves for stars collapsing from the peak of the Asymptotic Giant Branch to being white dwarfs.
This page should automatically redirect you to the page with the publication's full details.
To go to the publication page, please click here.
This page should automatically redirect you to the page with the publication's full details.
To go to the publication page, please click here.
This page should automatically redirect you to the page with the publication's full details.
To go to the publication page, please click here.
This document presents the scientific objectives of the ESA mission STE-QUEST and provides the top level science requirements. STE-QUEST is a mission in the Fundamental Physics domain conceived to test to high accuracy the different aspects of the Einstein Equivalence Principle (EEP). The scientific case described in this document was initially recommended by the ESA-appointed "Fundamental Physics Roadmap Advisory Team" (FPR-AT) as a result of a large consultation process conducted in the fundamental physics community [FPR-AT, A Roadmap for Fundamental Physics in Space, (2010)]. Submitted in reply to the 2010 Call for Medium-size Missions for the Cosmic Vision plan, STE-QUEST was recommended by the ESA advisory structure and finally selected for an assessment study.
This Science Requirements Document (SciRD) will be the basis for the STE-QUEST mission design during the assessment study phase, which started in April 2011 and will be concluded with the presentation of the study results to the ESA advisory structure in beginning 2014. During the assessment phase, it is expected that the requirements may be adjusted driven by technical feasibility within the programmatic boundaries. The STE-QUEST Study Science Team will act as the review and control board for changes in this document. The possible changes will be logged in this document to provide a record of the evolution.
This document also aims at showing the links between science requirements and mission performance requirements, in order to help to understand, trace, and support the analysis of the relation between mission specifications and scientific objectives.
Aims. A strong, hard X-ray flare was discovered (IGR J12580+0134) by INTEGRAL in 2011, and is associated to NGC 4845, a Seyfert 2 galaxy never detected at high-energy previously. To understand what happened we observed this event in the X-ray band on several occasions.
Methods.
Follow-up observations with XMM-Newton, Swift, and MAXI are presented together with the INTEGRAL data. Long and short term variability are analysed and the event wide band spectral shape modelled.Results.
The spectrum of the source can be described with an absorbed (NH ~ 7 × 1022 cm-2) power law (Gamma = 2.2), characteristic of an accreting source, plus a soft X-ray excess, likely to be of diffuse nature. The hard X-ray flux increased to maximum in a few weeks and decreased over a year, with the evolution expected for a tidal disruption event. The fast variations observed near the flare maximum allowed us to estimate the mass of the central black hole in NGC 4845 as ~3 × 105 solar masses. The observed flare corresponds to the disruption of about 10% of an object with a mass of 14-30 Jupiter. The hard X-ray emission should come from a corona forming around the accretion flow close to the black hole. This is the first tidal event where such a corona has been observed.We study in detail high-frequency (HF) plasma waves between the electron cyclotron and plasma frequencies within a reconnection diffusion region (DR) encountered by Cluster in the magnetotail using continuous electric field waveforms. We identify three wave types, all observed within the separatrix regions: Langmuir waves (LW), electrostatic solitary waves (ESWs), and electron cyclotron waves (ECWs). This is the first time the ECWs have been observed inside this region. Direct comparison between waveforms and electron distributions are made at the timescale of one energy sweep of the electron detector (125 ms). Based on the wave and electron distribution characteristics, we find that the separatrix region has a stratified spatial structure. The outer part of the region is dominated by LW emissions related to suprathermal electron beams propagating away from the X-line. Furthest in, nearest to the current sheet, we observe ESWs associated with counterstreaming electron populations. Studying HF waveforms allows for a precise mapping of kinetic boundaries in the reconnection region and helps to improve our understanding of the electron dynamics in the DR.