Asset Publisher

Herschel observations of the W3 GMC: Clues to the formation of clusters of high-mass stars

Herschel observations of the W3 GMC: Clues to the formation of clusters of high-mass stars

Publication date: 02 March 2013

Authors: A. Rivera-Ingraham et al.,

Journal: The Astrophysical Journal
Volume: 766
Page: 85
Year: 2013

Copyright: 2013 IOP Publishing

The W3 GMC is a prime target for the study of the early stages of high-mass star formation. We have used Herschel data from the HOBYS key program to produce and analyze column density and temperature maps. Two preliminary catalogs were produced by extracting sources from the column density map and from Herschel maps convolved to 500 Œm resolution. Herschel reveals that among the compact sources (FWHM < 0.45 pc), W3 East, W3 West, and W3 (OH) are the most massive and luminous and have the highest column density. Considering the unique properties of W3 East and W3 West, the only clumps with ongoing high-mass star formation, we suggest a "convergent constructive feedback" scenario to account for the formation of a cluster with decreasing age and increasing system/source mass toward the innermost regions. This process, which relies on feedback by high-mass stars to ensure the availability of material during cluster formation, could also lead to the creation of an environment suitable for the formation of Trapezium-like systems. In common with other scenarios proposed in other HOBYS studies, our results indicate that an active/dynamic process aiding in the accumulation, compression, and confinement of material is a critical feature of the high-mass star/cluster formation, distinguishing it from classical low-mass star formation. The environmental conditions and availability of triggers determine the form in which this process occurs, implying that high-mass star/cluster formation could arise from a range of scenarios: from large-scale convergence of turbulent flows to convergent constructive feedback or mergers of filaments.

Link to publication
Last Update: Sep 1, 2019 8:50:48 AM
9-Sep-2024 20:55 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/AGdP06w

Related Publications

Related Links

Documentation