ESA Science & Technology - Publication Archive
Publication archive
Publication archive
Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B ~ 1014 to 1015 gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 × 1012 gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far.
Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias.
Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations.
Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22.
- The remainder of the abstract is truncated -
This page should automatically redirect you to the page with the publication's full details.
To go to the publication page, please click here.
We propose number of targets observed with SMART-1 for follow-up studies with LRO. We shall also discuss SMART-1 lunar highlights relevant for science and exploration, in relation with LRO/LCROSS and future lander missions.