Publication archive

Publication archive

We report the detection of ADFS-27, a dusty, starbursting major merger at a redshift of z = 5.655, using the Atacama Large Millimeter/submillimeter Array (ALMA). ADFS-27 was selected from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) and APEX/LABOCA data as an extremely red "870 μm riser" (i.e., S250 μm < S350 μm < S500 μm < S870 μm), demonstrating the utility of this technique to identify some of the highest-redshift dusty galaxies. A scan of the 3 mm atmospheric window with ALMA yields detections of CO(J = 5 → 4) and CO(J = 6 → 5) emission, and a tentative detection of H2O(211 → 202) emission, which provides an unambiguous redshift measurement. The strength of the CO lines implies a large molecular gas reservoir with a mass of Mgas = 2.5 × 1011 (αCO/0.8)(0.39/r51) M, sufficient to maintain its ~2400 M yr-1 starburst for at least ~100 Myr. The 870 μm dust continuum emission is resolved into two components, 1.8 and 2.1 kpc in diameter, separated by 9.0 kpc, with comparable dust luminosities, suggesting an ongoing major merger. The infrared luminosity of LIR≃ 2.4 × 1013 L implies that this system represents a binary hyper-luminous infrared galaxy, the most distant of its kind presently known. This also implies star formation rate surface densities of ΣSFR =730 and 750 M yr-1 kpc², consistent with a binary "maximum starburst." The discovery of this rare system is consistent with a significantly higher space density than previously thought for the most luminous dusty starbursts within the first billion years of cosmic time, easing tensions regarding the space densities of z ~ 6 quasars and massive quiescent galaxies at z ≳ 3.
Published: 13 November 2017
Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus, only a few kilometres below the surface in the South Polar Terrain. Chemical analyses indicate that the ocean is salty and is fed by ongoing hydrothermal activity. In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole. Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1–5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years.
Published: 06 November 2017
Auroral hot spots are observed across the Universe at different scales and mark the coupling between a surrounding plasma environment and an atmosphere. Within our own Solar System, Jupiter possesses the only resolvable example of this large-scale energy transfer. Jupiter's northern X-ray aurora is concentrated into a hot spot, which is located at the most poleward regions of the planet's aurora and pulses either periodically or irregularly. X-ray emission line spectra demonstrate that Jupiter's northern hot spot is produced by high charge-state oxygen, sulfur and/or carbon ions with an energy of tens of MeV that are undergoing charge exchange. Observations instead failed to reveal a similar feature in the south. Here, we report the existence of a persistent southern X-ray hot spot. Surprisingly, this large-scale southern auroral structure behaves independently of its northern counterpart. Using XMM-Newton and Chandra X-ray campaigns, performed in May–June 2016 and March 2007, we show that Jupiter's northern and southern spots each exhibit different characteristics, such as different periodic pulsations and uncorrelated changes in brightness. These observations imply that highly energetic, non-conjugate magnetospheric processes sometimes drive the polar regions of Jupiter's dayside magnetosphere. This is in contrast to current models of X-ray generation for Jupiter. Understanding the behaviour and drivers of Jupiter's pair of hot spots is critical to the use of X-rays as diagnostics of the wide range of rapidly rotating celestial bodies that exhibit these auroral phenomena.
Published: 30 October 2017
On 2016 July 03, several instruments onboard ESA's Rosetta spacecraft detected signs of an outburst event on comet 67P, at a heliocentric distance of 3.32 au from the Sun, outbound from perihelion. We here report on the inferred properties of the ejected dust and the surface change at the site of the outburst. The activity coincided with the local sunrise and continued over a time interval of 14–68 min. It left a 10-m-sized icy patch on the surface. The ejected material comprised refractory grains of several hundred microns in size, and sub-micron-sized water ice grains. The high dust mass production rate is incompatible with the free sublimation of crystalline water ice under solar illumination as the only acceleration process. Additional energy stored near the surface must have increased the gas density. We suggest a pressurized sub-surface gas reservoir, or the crystallization of amorphous water ice as possible causes.
Published: 26 October 2017

Document reference: CDF-175(C)

This document is the assessment study report for GaiaNIR (Gaia Near Infra-Red), which was one of the proposals received in response to the 2016 Call for New Science Ideas in ESA's Science Programme. Three mission concepts were selected as a result of this call, and GaiaNIR was one of them.

The GaiaNIR proposal encompasses:

  • Enlarging the astrometric achievement of Gaia to the astronomical sources which are only visible in Near Infra-Red
  • Maintaining the accuracy of the Gaia optical reference frame
  • Improving the star parallax and proper motion accuracy by revisiting the astronomical sources a number of years after Gaia.
The report has been prepared by the ESA Concurrent Design Facility (CDF).

Corrigendum:
This document was updated on 8 June 2018, with minor edits made to page 249 according to the final version of the document. The concerned lines are indicated by a blue band on the side of that page.

Published: 24 October 2017
The equatorial middle atmospheres of the Earth, Jupiter and Saturn all exhibit a remarkably similar phenomenon–a vertical, cyclic pattern of alternating temperatures and zonal (east–west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an ~15-year period) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 2010, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years. Far from the storm, the Cassini temperature measurements showed a dramatic ~10 K cooling in the 0.5–5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.
Published: 24 October 2017
We present UBVRI and CT1T2 photometry for 15 catalogued open clusters of relative high brightness and compact appearance. From these unprecedented photometric data sets, covering wavelengths from the blue up to the near-infrared, we performed a thorough assessment of their reality as stellar aggregates. We statistically assigned to each observed star within the object region a probability of being a fiducial feature of that field in terms of its local luminosity function, colour distribution and stellar density. Likewise, we used accurate parallaxes and proper motions measured by the Gaia satellite to help our decision on the open cluster reality. 10 catalogued aggregates did not show any hint of being real physical systems; three of them had been assumed to be open clusters in previous studies, though. On the other hand, we estimated reliable fundamental parameters for the remaining five studied objects, which were confirmed as real open clusters. They resulted to be clusters distributed in a wide age range, 8.0 ≤ log (t yr1) ≤ 9.4, of solar metal content and placed between 2.0 and 5.5 kpc from the Sun. Their ages and metallicities are in agreement with the presently known picture of the spatial distribution of open clusters in the Galactic disc.
Published: 23 September 2017
We observed six He-clump stars of the intermediate-age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton- and neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.
Published: 23 September 2017
We confirm the reality of the recently discovered Milky Way stellar cluster Gaia 1 using spectra acquired with the HERMES and AAOmega spectrographs of the Anglo-Australian Telescope. This cluster had been previously undiscovered due to its close angular proximity to Sirius, the brightest star in the sky at visual wavelengths. Our observations identified 41 cluster members, and yielded an overall metallicity of [Fe/H]=−0.13±0.13 and barycentric radial velocity of vr = 58.30 ± 0.22 km s−1. These kinematics provide a dynamical mass estimate of 12.9+4.6−3.9×103M⊙ . Isochrone fits to Gaia, 2MASS, and Pan-STARRS1 photometry indicate that Gaia 1 is an intermediate age (∼3 Gyr) stellar cluster. Combining the spatial and kinematic data we calculate Gaia 1 has a circular orbit with a radius of about 12 kpc, but with a large out of plane motion: zmax=1.1+0.4−0.3  kpc. Clusters with such orbits are unlikely to survive long due to the number of plane passages they would experience.
Published: 23 September 2017
We present the results of the very first search for faint Milky Way satellites in the Gaia data. Using stellar positions only, we are able to re-discover objects detected in much deeper data as recently as the last couple of years. While we do not identify new prominent ultrafaint dwarf galaxies, we report the discovery of two new star clusters, Gaia 1 and Gaia 2. Gaia 1 is particularly curious, as it is a massive (2.2 × 104 M⊙), large (∼9 pc) and nearby (4.6 kpc) cluster, situated 10 arcmin away from the brightest star on the sky, Sirius! Even though this satellite is detected at significance in excess of 10, it was missed by previous sky surveys. We conclude that Gaia possesses powerful and unique capabilities for satellite detection, thanks to its unrivalled angular resolution and highly efficient object classification.
Published: 23 September 2017
Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.
Published: 22 September 2017
We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, MAVEN, Mars Odyssey and MSL missions, 44 hours before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9 AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a non-ambiguous signature at New Horizons. A potential detection of this ICME by Voyager-2 at 110-111 AU is also discussed. The multi-spacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116°, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P and Saturn.
Published: 15 August 2017
Loss of the early Martian atmosphere is often thought to have occurred due to an effective transfer of the solar wind energy through the Martian induced magnetic barrier to the ionosphere. We have quantified the coupling efficiency by comparing the power of the heavy ion outflow with the available power supplied by the upstream solar wind. Constraining upstream solar wind density nsw, velocity vsw, and EUV intensity IEUV/photoionizing flux FXUV in varying intervals reveals a decrease in coupling efficiency, k, with solar wind dynamic pressure as kpdyn-0.74±0.13 and with FXUV as kFXUV-2.28±0.30. Despite the decrease in coupling efficiency, higher FXUV enhances the cold ion outflow, increasing the total ion escape rate as Q(FXUV) = 1010(0.82 ± 0.05)FXUV. The discrepancy between coupling and escape suggests that ion escape from Mars is primarily production limited in the modern era, though decreased coupling may lead to an energy-limited solar wind interaction under early Sun conditions.
Published: 04 August 2017

Context. Over the past 40 years, helioseismology has been enormously successful in the study of the solar interior. A shortcoming has been the lack of a convincing detection of the solar g modes, which are oscillations driven by gravity and are hidden in the deepest part of the solar body – its hydrogen-burning core. The detection of g modes is expected to dramatically improve our ability to model this core, the rotational characteristics of which have, until now, remained unknown.

Aims. We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes.

Methods. The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. The search for g modes in GOLF measurements has been extremely difficult because of solar and instrumental noise. In the present study, the p modes of the GOLF signal are analyzed differently: we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties.

Results. For oscillatory periods in the range between 9 and nearly 48 h, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguously provide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations.

[Remainder of abstract truncated due to character limitations]

Published: 02 July 2017
We confirm the reality of the recently discovered Milky Way stellar cluster Gaia 1 using spectra acquired with the HERMES and AAOmega spectrographs of the Anglo-Australian Telescope. This cluster had been previously undiscovered due to its close angular proximity to Sirius, the brightest star in the sky at visual wavelengths. Our observations identified 41 cluster members, and yielded an overall metallicity of [Fe/H]=−0.13±0.13 and barycentric radial velocity of vr = 58.30 ± 0.22 km s-1. These kinematics provide a dynamical mass estimate of 12.9+4.6-3.9×103 M. Isochrone fits to Gaia, 2MASS, and Pan-STARRS1 photometry indicate that Gaia 1 is an intermediate age (~3 Gyr) stellar cluster. Combining the spatial and kinematic data we calculate Gaia 1 has a circular orbit with a radius of about 12 kpc, but with a large out of plane motion: zmax=1.1+0.4-0.3 kpc. Clusters with such orbits are unlikely to survive long due to the number of plane passages they would experience.
Published: 27 July 2017
Cassini discovered a plethora of neutral and ionized molecules in Titan's ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0–50.1 u q-1 which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q-1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
Published: 27 July 2017
We observed six He-clump stars of the intermediate-age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton- and neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.
Published: 20 July 2017
During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s-1. In particular, the location of these winds–close to the quasar, further out in its host galaxy, or in its direct environment–and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.
Published: 01 July 2017
We present the results of a 140 ks XMM-Newton observation of the B2 star ρ Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT ~ 5 keV). From the analysis of its rise, we infer a magnetic field of ≥300 G and a size of the flaring region of ~ 1.4 − 1.9 × 1011 cm, which corresponds to ~25%–30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of ≥2.5 yr, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems. In both cases ρ Oph would constitute an extreme system that is worthy of further investigation.
Published: 21 June 2017
22-Nov-2019 08:25 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW