ESA Science & Technology - Publication Archive
Publication archive
Publication archive
Contents:
- Foreword
- AO-7 Results
- AO-8 Timetable
- Science Operations
- 7th INTEGRAL Workshop
- Science Highlights
- Changes at ISOC
- Contacting ISOC
This technical review report for the Euclid candidate mission presents the outcome of ESA's internal review of this M-class candidate mission in the Cosmic Vision 2015-2025 plan. The review was concluded at the end of the mission assessment phase and carried out in frame of the down-selection to 3 or 4 M-class missions, which will proceed to the definition phase. The main goal of this internal review was to identify the mission's critical issues and associated risks at technical, programmatic and financial level.
This technical review report for the SPICA candidate mission presents the outcome of ESA's internal review of this M-class candidate mission in the Cosmic Vision 2015-2025 plan. The review was concluded at the end of the mission assessment phase and carried out in frame of the down-selection to 3 or 4 M-class missions, which will proceed to the definition phase. The main goal of this internal review was to identify the mission's critical issues and associated risks at technical, programmatic and financial level.
The Chinese National Space Agency (CNSA) Double Star (DSP) spacecraft, TC-1 and TC-2 were launched in December 2003 and July 2004 into near equatorial and polar orbits respectively. During more than 3 years of operations they have maintained a close phasing with the ESA four-spacecraft mission to produce the first, well coordinated multi-scale measurements, sampling phenomena with five and six spacecraft. In this short paper we give a brief review of the DSP mission and show its joint capability with Cluster by showing examples of use of some early and more recent analysis techniques and their application to (more than) four spacecraft. We highlight a selection of some co-ordinated events, focussing on dayside phenomena, but also with a brief discussion of a tail event. Other reviews in this special issue will deal more completely with coverage of the other regions of the magnetosphere.
Part of original abstract follows:
At the time of writing, Cluster is approaching 8 years of successful operation and continues to fulfill, if not exceed its scientific objectives. After a nominal mission lifetime of 2 years Cluster currently in its extended mission phase, up to June 2009, with a further extension request submitted for a further 3.5 years. The primary goals of the Cluster mission include three-dimensional studies of small-scale plasma structures and turbulence in the key plasma regions in the Earth's environment: solar wind and bow shock, magnetopause, polar cusps, magnetotail, and auroral zone. During the course of the mission, the relative distance between the four spacecraft is being varied to form a nearly perfect tetrahedral configuration at 100, 250, 600, 2,000, 5,000 and 10,000 km inter-spacecraft separation targeted to study scientifically interesting regions at different scales. In the last few years, the constellation strategy has moved towards a multi-scale concept, enabling two scale sizes to be investigated at the same time. In these cases, three spacecraft are separated by 10,000 km with the last spacecraft separated from this plane by varying distances from 16 km up to several 1,000 km. In this paper, we provide a brief overview of the mission concept and implementation and highlight a number of Cluster's latest science results, which include: the first observation of three dimensional (3-D) surface waves on the bow shock, the first 3-D analysis of turbulence in the magnetosheath, the discovery of magnetosonic waves accelerating electrons to MeV energies in the radiation belts, along with a number of discoveries involving magnetic reconnection.
The four-satellite Cluster mission investigates the small-scale structures and physical processes related to interaction between the solar wind and the magnetospheric plasma. The Cluster Active Archive (CAA) (URL: http://caa.estec.esa.int) will contain the entire set of Cluster high-resolution data and other allied products in a standard format and with a complete set of metadata in machine readable format. The total amount of the data files in compressed format is expected to exceed 50 TB. The data archive is publicly accessible and suitable for science use and publication by the world-wide scientific community. The CAA aims to provide user-friendly services for searching and accessing these data and ancillary products. The CAA became operational in February 2006 and as of Summer 2008 has data from most of the Cluster instruments for at least the first 5 years of operations (2001-2005). The coverage and range of products are being continually improved with more than 200 datasets available from each spacecraft, including high-resolution magnetic and electric DC fields and wave spectra; full three-dimensional electron and ion distribution functions from a few eV to hundreds of keV; and various ancillary and browse products to help with spacecraft and event location. The CAA is continuing to extend and improve the online capabilities of the system and the quality of the existing data. It will add new data files for years 2006-2009 and is preparing for the long-term archive with complete coverage after the completion of the Cluster mission.
Executive Summary of the mission study by Thales Alenia Space (Reference: SD-RP-AI-0673).
The scope of this study was to provide technical definition and programmatic assessments of the whole space segment (Spacecraft + Earth Re-entry Capsule + Guidance Navigation & Control and of Touch & Go System + Sampling Acquisition & Transfer System), including development schedule and industrial costs evaluation. This information will support the selection process of the M mission to enter the definition Phase in the first half of 2010.