Publication archive

Publication archive

Local acceleration is required to explain electron flux increases in the outer Van Allen radiation belt during magnetic storms. Here we show that fast magnetosonic waves, detected by Cluster 3, can accelerate electrons between ~10 keV and a few MeV inside the outer radiation belt. Acceleration occurs via electron Landau resonance, and not Doppler shifted cyclotron resonance, due to wave propagation almost perpendicular to the ambient magnetic field. Using quasi-linear theory, pitch angle and energy diffusion rates are comparable to those for whistler mode chorus, suggesting that these waves are very important for local electron acceleration. Since pitch angle diffusion does not extend into the loss cone, these waves, on their own, are not important for loss to the atmosphere. We suggest that magnetosonic waves, which are generated by unstable proton ring distributions, are an important energy transfer process from the ring current to the Van Allen radiation belts.
Published: 16 September 2007
The normal electric field structure of a supercritical (Mms = 5.2), quasiperpendicular (tetaBn = 70°) collisionless shock is examined using Cluster four-spacecraft observations of the terrestrial bow shock. Comparing the observed electric field with magnetic field and plasma observations, two different techniques find that the J x B/ne term in the generalized Ohm's law accounts for a majority of the large-scale normal electric field and potential drop encountered by the ions - the solar wind ion deceleration is in good empirical agreement with the observed potential drop, confirming earlier work. Large amplitude electric field fluctuations on shorter timescales, corresponding to fine scale structure, are not observed to contribute to the ion energization.
Published: 14 September 2007
Most satellite-based in situ plasma experiments are affected in some manner by the electrostatic structure surrounding the spacecraft. In order to better understand this structure, we have developed a fully three-dimensional self-consistent model that can accept realistic spacecraft geometry, including both thin (~10-4 m) wires and long (~10² m) booms, with open boundary conditions. The model uses an integral formulation incorporating boundary element, multigrid and fast multipole methods to overcome problems associated with the large range in scale sizes and inherently three-dimensional structure. By applying the model to the Cluster spacecraft, we show that the electric potential structure is dominated by the charge on the wire booms, with the spacecraft body contributing at small distances. Consequently, the potential near the EFW (Electric Fields and Waves experiment) probes at the end of the wire booms is typically significantly above the true plasma potential. For the Cluster spacecraft, we show that this effect causes a 19% underestimation of the spacecraft potential and 13% underestimation of the ambient electric field. We further assess the electric field due to the sunward-oriented photoelectron cloud, showing that the cloud contributes little to the observed spurious sunward field in the EFW data.
Published: 14 September 2007
Cryogenic Optical Systems and Instruments XII. Edited by Heaney, James B.; Burriesci, Lawrence G. Proceedings of the SPIE, Volume 6692, pp. 66920N (2007)

The James Webb Space Telescope (JWST) Observatory, the follow-on mission to the Hubble Space Telescope, will yield astonishing breakthroughs in infrared space science. One of the four instruments on that mission, the NIRSpec instrument, is being developed by the European Space Agency with EADS Astrium Germany GmbH as the prime contractor. This multi-object spectrograph is capable of measuring the near infrared spectrum of at least 100 objects simultaneously at various spectral resolutions in the 0.6 micron to 5.0 micron wavelength range. A physical optical model, based on Fourier Optics, was developed in order to simulate some of the key optical performances of NIRSpec. Realistic WFE maps were established for both the JWST optical telescope as well as for the various NIRSpec optical stages. The model simulates the optical performance of NIRSpec at the key optical pupil and image planes. Using this core optical simulation module, the model was expanded to a full instrument performance simulator that can be used to simulate the response of NIRSpec to any given optical input. The program will be of great use during the planning and evaluation of performance testing and calibration measurements.

Published: 13 September 2007
Cryogenic Optical Systems and Instruments XII. Edited by Heaney, James B.; Burriesci, Lawrence G. Proceedings of the SPIE, Volume 6692, pp. 66920M (2007)

The James Webb Space Telescope (JWST) mission is a collaborative project between the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA) and the Canadian Space Agency (CSA). JWST is considered the successor to the Hubble Space Telescope (HST) and although its design and science objectives are quite different, JWST is expected to yield equivalently astonishing breakthroughs in infrared space science. Due to be launched in 2013 from the French Guiana, the JWST observatory will be placed in an orbit around the anti- Sun Earth-Sun Lagrangian point, L2, by an Ariane 5 launcher, provided by ESA. The payload on board the JWST observatory consists of four main scientific instruments: a near-infrared camera (NIRCam), a combined mid-infrared camera/spectrograph (MIRI), a near-infrared tunable filter (TFI) and a nearinfrared spectrograph (NIRSpec). The instrument suite is completed by a Fine Guidance Sensor (FGS). Besides the provision of the Ariane 5 launcher, ESA, with EADS Astrium GmbH (D) as Prime Contractor, is fully responsible for the funding and the furnishing of NIRSpec and, at the same time, for approximately half of MIRI costs through special contributions from the ESA member states. NIRSpec is a multi-object, spectrograph capable of measuring the spectra of about 100 objects simultaneously at low (R=100), medium (R=1000), and high (R=2700) resolutions over the wavelength range between 0.6 micron and 5.0 micron. In this article we provide a general overview of its main design features and performances.

Published: 13 September 2007
The present study examines a sawtooth injection event that took place around 0800 UT on 18 April 2002 when the Cluster spacecraft were located in the inner magnetosphere in the premidnight sector. In association with this injection, Cluster, at a radial distance of 4.6 RE , observed that the local magnetic field became more dipolar and that both ion and electron fluxes increased without notable energy dispersion. These features were accompanied by intensifications of the equatorward component of a double-oval structure and also by an enhancement of the ring-current oxygen ENA flux. The event was also accompanied by large magnetic field (a few tens of nT) and electric field (a few tens of mV/m) fluctuations with characteristic timescales of a few tens of seconds. These observations strongly suggest that this sawtooth injection extended not only widely in local time but also deeply into the inner magnetosphere. Interestingly, Cluster repeatedly observed dipolarization-like signatures afterward, which, however, were not associated with enhancements of local energetic ion flux or with geosynchronous dipolarization or injection signatures. Instead, these magnetic signatures were accompanied by oscillatory plasma motion in the radial direction with a characteristic timescale of about 10 min, which appears to be related to the westward propagation of a spatially periodic auroral structure. The associated azimuthal electric field component was well correlated with the time derivative of the north-south magnetic field component, suggesting that the observed electric field is inductive. These findings suggest that electromagnetic processes far inside geosynchronous orbit play an important role in energization of energetic ions and auroral dynamics during magnetospheric storms.
Published: 01 September 2007
We present observations of three magnetic flux ropes in the tail of the Earth's magnetosphere on 7 August 2004 by the Cluster and Double Star TC-1 spacecraft. The first two flux rope signatures were observed, near-simultaneously, by Cluster and TC-1, which were located at (-16.3, -8.7, 0.10) RE GSM and (-10.3, -7.11, 0.81) RE GSM, respectively, a separation of 6.3 RE. A third signature was observed some four minutes later by two of the four Cluster spacecraft, while the other two spacecraft observed a feature resembling a Travelling Compression Region (TCR). These observations are interpreted as three individual flux ropes existing in the magnetotail, the first two, at least, simultaneously. The formation mechanism of the flux ropes and the consequences of their presence for the structure of the magnetotail on this day are discussed in the context of multiple X-point reconnection.
Published: 30 August 2007
Bursty bulk flow associated magnetic fluctuations exhibit at least three spectral scaling ranges in the Earth's plasma sheet. Two of the three scaling ranges can be associated with multi-scale magnetohydrodynamic turbulence between the spatial scales from ~100 km to several RE (RE is the Earth's radius). These scales include the inertial range and below ~0.5 RE a steepened scaling range, theoretically not fully understood yet. It is shown that, in the near-Earth plasma sheet, the inertial range can be robustly identified only if multi-scale quasi stationary (MSQS) data intervals are selected. Multiple bursty flow associated magnetic fluctuations, however, exhibit 1/f type scaling indicating that large-scale fluctuations are controlled by multiple uncorrelated driving sources of the bulk flows (e.g. magnetic reconnection, instabilities).
Published: 25 September 2007
To appear in The Astrophysical Journal

High redshift galaxies selected on the basis of their strong Lyman-alpha emission tend to be young ages and small physical sizes. We show this by analyzing the spectral energy distribution (SED) of 9 Lyman-alpha emitting (LAE) galaxies at 4.0 < z < 5.7 in the Hubble Ultra Deep Field (HUDF). Rest-frame UV to optical 700A < lambda < 7500A luminosities, or upper limits, are used to constrain old stellar populations. We derive best fit, as well as maximally massive and maximally old, properties of all 9 objects. We show that these faint and distant objects are all very young, being most likely only a few millions years old, and not massive, the mass in stars being ~106-108 MSun. Deep Spitzer Infrared Array Camera (IRAC) observations of these objects, even in cases where objects were not detected, were crucial in constraining the masses of these objects. The space density of these objects, ~1.25x10-4 Mpc-3 is comparable to previously reported space density of LAEs at moderate to high redshifts. These Lyman-alpha galaxies show modest star formation rates of ~8 MSun yr-1, which is nevertheless strong enough to have allowed these galaxies to assemble their stellar mass in less than a few x106 years. These sources appear to have small physical sizes, usually smaller than 1 Kpc, and are also rather concentrated. They are likely to be some of the least massive and youngest high redshift galaxies observed to date.

Published: 14 August 2007
We investigate the effect of slow expansion on a magnetosheath plasma and low-frequency waves using a two-dimensional hybrid expanding box simulation. We start our simulation with a homogeneous high beta plasma, which is marginally stable to the mirror and proton cyclotron instabilities. The expansion is imposed as an external force: the physical size of the simulation box increases in two dimensions: one parallel and one perpendicular with respect to the ambient magnetic field. This expansion leads to a continuous decrease of proton beta and drives an increase of the proton temperature anisotropy. In the early stages of the simulation, both mirror and proton cyclotron waves appear. The system establishes a marginally stable state with respect to both mirror and proton cyclotron instabilities. Initially, the mirror waves dominate the proton cyclotron waves, even when the system is below the linear mirror threshold, but as time increases the proton cyclotron waves become dominant in the low beta region. We also include an initial comparison of the simulated data with Cluster observations.
Published: 08 August 2007
This issue of Spatium is devoted to the history of astronomy, more precisely to its evolution in Europe and the area adjacent to the Mediterranean Sea.

The article is based loosely on a talk given by Professor Giovanni Bignami to the Association Pro-ISSI.
Published: 02 July 2007
Based on drift velocity measurements of the EDI instruments on Cluster during the years 2001-2006, we have constructed a database of high-latitude ionospheric convection velocities and associated solar wind and magnetospheric activity parameters. In an earlier paper (Haaland et al., 2007), we have described the method, consisting of an improved technique for calculating the propagation delay between the chosen solar wind monitor (ACE) and Earth's magnetosphere, filtering the data for periods of sufficiently stable IMF orientations, and mapping the EDI measurements from their high-altitude positions to ionospheric altitudes. The present paper extends this study, by looking at the spatial pattern of the variances of the convection velocities as a function of IMF orientation, and by performing sortings of the data according to the IMF magnitude in the GSM y-z plane, |ByzIMF|, the estimated reconnection electric field, Er,sw, the solar wind dynamic pressure, Pdyn, the season, and indices characterizing the ring current (Dst) and tail activity (ASYM-H). The variability of the high-latitude convection shows characteristic spatial patterns, which are mirror symmetric between the Northern and Southern Hemispheres with respect to the IMF By component. The latitude range of the highest variability zone varies with IMF Bz similar to the auroral oval extent. The magnitude of convection standard deviations is of the same order as, or even larger than, the convection magnitude itself. Positive correlations of polar cap activity are found with |ByzIMF| and with Er,sw, in particular. The strict linear increase for small magnitudes of Er,sw starts to deviate toward a flattened increase above about 2 mV/m. - Remainder of abstract truncated -
Published: 31 July 2007
Simultaneous observations by the Cluster spacecraft and SuperDARN radars are presented of magnetotail flux transport during northward, but BY-dominated IMF. Two events are discussed, which occurred on 14 August 2004 and 17 September 2005, during intervals of negative and positive IMF BY, respectively. During both intervals the Cluster spacecraft observed isolated bursts of Earthward plasma convection in the central plasma sheet. During the first event, the flows observed by Cluster also had a significant Vperp.Y component in the duskward direction, consistent with westward azimuthal flows observed in the midnight sector by the Northern Hemisphere SuperDARN radars. During the second event, Cluster 4 observed a significant dawnward Vperp.Y component, again consistent with the Northern Hemisphere SuperDARN observations which revealed eastward azimuthal flow. In this instance, however, Cluster 3 observed a duskward Vperp.Y component which was more consistent with the duskward sense of the convection observed by the Southern Hemisphere SuperDARN radars. This implies that Cluster 3 and Cluster 4 were located on different field lines which experienced opposite net azimuthal forces and hence observed oppositely directed convection. These observations are consistent with previous SuperDARN studies of nightside flows under northward IMF and, more importantly, provide the first simultaneous in-situ evidence for a mode of tail reconnection occurring during non-substorm intervals in an asymmetric tail.
Published: 31 July 2007
The simple model of reconnected field line motion developed by Cooling et al. (2001) has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km), we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT) velocities calculated from the Cooling model (to within 30° and a factor of two in the speed). We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.
Published: 31 July 2007
We present a study of the plasma properties inside and dynamics of the low-latitude boundary layer (LLBL)/cusp during the ICME event on 7 November 2004 based on data from the four Cluster spacecraft. The interplanetary magnetic field (IMF) is predominantly strongly northward, up to 50 nT, with some short-duration rotations. The observed LLBL/cusp is very thick (~6 - 7° invariant latitude (ILAT)) and migrates equatorward with rates of 0.55° and 0.04° ILAT per minute during quick southward IMF rotations and stable northward IMF, respectively. The LLBL/cusp observed by Cluster 1 and Cluster 4 is in a fast transition between different states and is populated by different types of plasma injection, presumably coming from multiple reconnection sites. During a period of extremely northward IMF, signatures of pulsed dual reconnection inside the LLBL/cusp are observed by Cluster 3, suggesting that at least part of the LLBL/cusp is on closed field lines. However, analysis of the ion data implies that the boundary layer is formed in the dawn sector of the magnetosphere and does not slowly convect from the dayside as has been suggested previously. A statistical study of the location of the LLBL/cusp equatorward boundary during the ICME events on 28 - 29 October 2003 and 7 - 10 November 2004 is performed. - Remainder of abstract truncated -
Published: 22 July 2007
In the near-Earth environment, strong bulk plasma accelerations are frequently taken to be the diagnostic of the occurrence of magnetic reconnection. In this letter, we report new and unambiguous spacecraft observations and corresponding magnetohydrodynamic (MHD) simulation of strong bulk plasma acceleration in the terrestrial magnetosheath during low Alfvén Mach number solar wind conditions, which is demonstrably not associated with magnetic reconnection. We illustrate this effect with Cluster spacecraft data that show plasma accelerations up to speeds of 1040 km/s, while the ambient solar wind speed is only 650 km/s (i.e., in excess by 60%). Based on a comparison with global MHD simulations of the magnetosphere, we show that the acceleration results from enhanced magnetic forces exerted on the plasma by "stiff" magnetic flux tubes in a low-Beta magnetosheath that result from the low Alfvén Mach number solar wind. The MHD simulations demonstrate that the acceleration is asymmetric, as well as the magnetopause shape, and is the result of both magnetic pressure gradient and tension forces, showing that this effect is not a simple analogy to a "slingshot effect" for which magnetic tension would dominate. Like magnetic reconnection, this mechanism is capable of producing strong plasma acceleration in the near-Earth's environment. The low Alfvén Mach number solar wind condition leading to this mechanism is often characteristic of coronal mass ejections (CMEs).
Published: 19 July 2007
We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plasmoids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids in the magnetotail at X > -13 RE. According to the difference of the magnetic field structure in plasmoids, we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magnetic field and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are associated with the high speed earthward flow and the magnetic loop is related to a strong substorm. The ions can escape from the magnetic flux rope along its open field line, but the case of the closed magnetic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the multiple X-line magnetic reconnection occurs beyond the distance of X=-10 RE from the Earth.
Published: 16 July 2007
We present in situ measurements in a space plasma showing that thin current sheets the size of an ion inertial length exist and are abundant in strong and intermittent plasma turbulence. Many of these current sheets exhibit the microphysical signatures of reconnection. The spatial scale where intermittency occurs corresponds to the observed structures. The reconnecting current sheets represent a type of dissipation mechanism, with observed dissipation rates comparable to or even dominating over collisionless damping rates of waves at ion inertial length scales (x100), and can have far reaching implications for small-scale dissipation in all turbulent plasmas.
Published: 14 July 2007
29-Mar-2024 07:45 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW