Asset Publisher

Statistical study of the location and size of the electron edge of the Low-Latitude Boundary Layer as observed by Cluster at mid-altitudes

Statistical study of the location and size of the electron edge of the Low-Latitude Boundary Layer as observed by Cluster at mid-altitudes

Publication date: 21 October 2006

Authors: Bogdanova, Y.V et al.

Journal: Annales Geophysicae
Volume: 24
Issue: 10
Page: 2645-2665
Year: 2006

Copyright: Copernicus

The nature of particle precipitations at dayside mid-altitudes can be interpreted in terms of the evolution of reconnected field lines. Due to the difference between electron and ion parallel velocities, two distinct boundary layers should be observed at mid-altitudes between the boundary between open and closed field lines and the injections in the cusp proper. At lowest latitudes, the electron-dominated boundary layer, named the "electron edge" of the Low-Latitude Boundary Layer (LLBL), contains soft-magnetosheath electrons but only high-energy ions of plasma sheet origin. A second layer, the LLBL proper, is a mixture of both ions and electrons with characteristic magnetosheath energies. The Cluster spacecraft frequently observe these two boundary layers. We present an illustrative example of a Cluster mid-altitude cusp crossing with an extended electron edge of the LLBL. This electron edge contains 10-200 eV, low-density, isotropic electrons, presumably originating from the solar wind halo population. These are occasionally observed with bursts of parallel and/or anti-parallel-directed electron beams with higher fluxes, which are possibly accelerated near the magnetopause X-line. We then use 3 years of data from mid-altitude cusp crossings (327 events) to carry out a statistical study of the location and size of the electron edge of the LLBL. We find that the equatorward boundary of the LLBL electron edge is observed at 10:00-17:00 magnetic local time (MLT) and is located typically between 68° and 80° invariant latitude (ILAT). The location of the electron edge shows a weak, but significant, dependence on some of the external parameters (solar wind pressure, and IMF BZ- component), in agreement with expectations from previous studies of the cusp location.

Link to publication
Last Update: Sep 1, 2019 9:12:19 AM
28-Nov-2021 11:30 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/ApPBd4A

Images And Videos

Related Publications

Related Links

See Also

Documentation