Publication archive

Publication archive

This brochure summarises the Herschel mission and its science achievements to date, capturing the basis for the science yet to come and its enduring legacy.

The European Space Agency's Herschel Space Observatory flew the largest single mirror ever built for a space telescope. At 3.5-metres in diameter the mirror collected long-wavelength radiation from some of the coldest and most distant objects in the Universe. In addition, Herschel was the only space observatory to cover a spectral range from the far infrared to sub-millimetre.

The Herschel mission leaves behind a lasting legacy in the form of a treasure trove of data, thousands of scientific papers, and a new generation of astronomers whose professional lives have been formed by working on this remarkable endeavour.

Contents:

  • Foreword
  • The other half of the light
  • Tools of the trade
  • The Herschel mission
  • Gathering the light
  • The infrared Universe
  • Origins
  • Engines of star formation
  • From dust to planets
  • The water trail
  • An international enterprise
  • A lasting legacy

Published: 09 May 2019
We report the detection of ADFS-27, a dusty, starbursting major merger at a redshift of z = 5.655, using the Atacama Large Millimeter/submillimeter Array (ALMA). ADFS-27 was selected from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) and APEX/LABOCA data as an extremely red "870 μm riser" (i.e., S250 μm < S350 μm < S500 μm < S870 μm), demonstrating the utility of this technique to identify some of the highest-redshift dusty galaxies. A scan of the 3 mm atmospheric window with ALMA yields detections of CO(J = 5 → 4) and CO(J = 6 → 5) emission, and a tentative detection of H2O(211 → 202) emission, which provides an unambiguous redshift measurement. The strength of the CO lines implies a large molecular gas reservoir with a mass of Mgas = 2.5 × 1011 (αCO/0.8)(0.39/r51) M, sufficient to maintain its ~2400 M yr-1 starburst for at least ~100 Myr. The 870 μm dust continuum emission is resolved into two components, 1.8 and 2.1 kpc in diameter, separated by 9.0 kpc, with comparable dust luminosities, suggesting an ongoing major merger. The infrared luminosity of LIR≃ 2.4 × 1013 L implies that this system represents a binary hyper-luminous infrared galaxy, the most distant of its kind presently known. This also implies star formation rate surface densities of ΣSFR =730 and 750 M yr-1 kpc², consistent with a binary "maximum starburst." The discovery of this rare system is consistent with a significantly higher space density than previously thought for the most luminous dusty starbursts within the first billion years of cosmic time, easing tensions regarding the space densities of z ~ 6 quasars and massive quiescent galaxies at z ≳ 3.
Published: 13 November 2017
During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s-1. In particular, the location of these winds–close to the quasar, further out in its host galaxy, or in its direct environment–and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.
Published: 01 July 2017
Published online 22 April 2016.

Aims. We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500μm, encompassing the peak of the spectral energy distribution of cold dust for 8 ≤ T ≤50K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68°≥ l ≥ -70° in a |b| ≤ 1° latitude strip.
Methods. Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2°×2° "tile" that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared.
Results. Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel mode observations at 60" s-1 scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service.
[Remainder of abstract truncated due to character limitations]

Published: 23 April 2016
The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37–99 pc long and 0.6–3.0 pc wide with masses (0.5–8.3) × 104 MSun, and beam-averaged (28 arcsec, or 0.4–0.7 pc) peak H2 column densities of (1.7–9.3)× 1022 cm−2. The bulk of the filaments are relatively cold (17–21 K), while some local clumps have a dust temperature up to 25–47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.
Published: 29 May 2015
Observations of molecular clouds reveal a complex structure, with gas and dust often arranged in filamentary, rather than spherical geometries. The association of pre- and proto-stellar cores with the filaments suggests a direct link with the process of star formation. Any study of the properties of such filaments requires representative samples from different environments for an unbiased detection method. We developed such an approach using the Hessian matrix of a surface-brightness distribution to identify filaments and determine their physical and morphological properties. After testing the method on simulated, but realistic, filaments, we apply the algorithms to column-density maps computed from Herschel observations of the Galactic plane obtained by the Hi-GAL project. We identified ~500 filaments, in the longitude range of l = 216.°5 to l = 225.°5, with lengths from ~1 pc up to ~30 pc and widths between 0.1 pc and 2.5 pc. Average column densities are between 1020 cm-2 and 1022 cm-2. Filaments include the majority of dense material with N_H_{2} > 6 × 1021 cm-2. We find that the pre- and proto-stellar compact sources already identified in the same region are mostly associated with filaments. However, surface densities in excess of the expected critical values for high-mass star formation are only found on the filaments, indicating that these structures are necessary to channel material into the clumps. Furthermore, we analyze the gravitational stability of filaments and discuss their relationship with star formation.
Published: 11 August 2014
We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216.°5 <~ l <~ 225.°5 and -2° <~ b <~ 0°) as a part of the Hi-GAL survey. The maps between 70 and 500 um, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to ~5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d <~ 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M) ∝ M -1.0 ± 0.2. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.
Published: 21 July 2013
Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial and boundary conditions of the star-formation process. The Herschel results emphasize the role of interstellar filaments in the star-formation process and connect remarkably well with nearly a decade's worth of numerical simulations and theory that have consistently shown that the interstellar medium (ISM) should be highly filamentary on all scales, and star formation is intimately related to self-gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is governed by relatively simple universal processes --- from filamentary clumps to galactic scales. We emphasize two crucial and complementary aspects: (1) the key observational results obtained with Herschel over the past three years, along with relevant new results obtained from the ground on the kinematics of interstellar structures; and (2) the key existing theoretical models and the many numerical simulations of interstellar cloud structure and star formation. We then synthesize a comprehensive physical picture that arises from the confrontation of these observations and simulations.
Published: 01 January 2014
We investigate the gas velocity dispersions of a sample of filaments recently detected as part of the Herschel Gould Belt Survey in the IC 5146, Aquila, and Polaris interstellar clouds. To measure these velocity dispersions, we use 13CO, C18O, and N2H+ line observations obtained with the IRAM 30 m telescope. Correlating our velocity dispersion measurements with the filament column densities derived from Herschel data, we show that interstellar filaments can be divided into two regimes: thermally subcritical filaments, which have transonic velocity dispersions (cs ≲ sigmatot < 2 cs) independent of column density and are gravitationally unbound; and thermally supercritical filaments, which have higher velocity dispersions scaling roughly as the square root of column density (tot ∝ Sigma00.5) and which are self-gravitating. The higher velocity dispersions of supercritical filaments may not directly arise from supersonic interstellar turbulence but may be driven by gravitational contraction/accretion. Based on our observational results, we propose an evolutionary scenario whereby supercritical filaments undergo gravitational contraction and increase in mass per unit length through accretion of background material, while remaining in rough virial balance. We further suggest that this accretion process allows supercritical filaments to keep their approximately constant inner widths (~0.1 pc) while contracting.
Published: 21 May 2013
We present first results from the Herschel Gould Belt survey for the B211/L1495 region in the Taurus molecular cloud. Thanks to their high sensitivity and dynamic range, the Herschel images reveal the structure of the dense, star-forming filament B211 with unprecedented detail, along with the presence of striations perpendicular to the filament and generally oriented along the magnetic field direction as traced by optical polarization vectors. Based on the column density and dust temperature maps derived from the Herschel data, we find that the radial density profile of the B211 filament approaches power-law behavior, rho ∝ r-2.0± 0.4, at large radii and that the temperature profile exhibits a marked drop at small radii. The observed density and temperature profiles of the B211 filament are in good agreement with a theoretical model of a cylindrical filament undergoing gravitational contraction with a polytropic equation of state: P ∝ rhogamma and T ∝ rhogamma-1, with gamma = 0.97 ± 0.01 < 1 (i.e., not strictly isothermal). The morphology of the column density map, where some of the perpendicular striations are apparently connected to the B211 filament, further suggests that the material may be accreting along the striations onto the main filament. The typical velocities expected for the infalling material in this picture are ~0.5-1 km s-1, which are consistent with the existing kinematical constraints from previous CO observations.
Published: 23 January 2013
We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 MSun and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM ∝ M-1.4 ± 0.4. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 MSun and leads to a flattening of the CMF at masses lower than ~4 MSun. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.
Published: 10 November 2013
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2°×2° tiles approximately centered at l=30° and l=59°. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around AV~1 is exceeded for the regions in the l=59° field; a AV value between 5 and 10 is found for the l=30° field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
Published: 17 July 2010
We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These "cold" Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a 4.5' beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500 μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350 μm, with 3% peaking at 500 μm, and none peaking at 250 μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z > 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy verdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of Td = 35 K.
[Remainder of abstract truncated due to character limitations]
Published: 01 April 2015
Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).
Published: 26 March 2015
Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500 μm obtained with the Herschel telescope, we investigate the dust-obscured star formation (SF) in the galaxy cluster XDCP J0044.0-2033 at z = 1.58, the most massive cluster at z > 1.5, with a measured mass M200 = 4.7+1.4-0.9 × 1014 M. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with ≥3σ significance in the PACS maps, all ultraluminous infrared galaxies. The individual star formation rates (SFRs) lie in the range 155-824 M yr-1, with dust temperatures of 24-35 K. We measure a strikingly high amount of SF in the cluster core, SFR (<250 kpc) ≥ 1875 ± 158 M yr-1, four times higher than the amount of SF in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z ~ 1.6 in a massive cluster.
Published: 13 December 2014
Context. The Helix nebula (NGC 7293) is our closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. Aims. We aim to study the spatial distribution of the atomic and the molecular gas, and the structure of the photodissociation region along the western rims of the Helix nebula as seen in the submillimeter range with Herschel. Methods. We used five SPIRE FTS pointing observations to make atomic and molecular spectral maps. We analyzed the molecular gas by modeling the CO rotational lines using a non-local thermodynamic equilibrium (non-LTE) radiative transfer model. Results. For the first time, we have detected extended OH+ emission in a planetary nebula. The spectra towards the Helix nebula also show CO emission lines (from J = 4 to 8), [N ii] at 1461 GHz from ionized gas, and [C i] (3P2-3P1), which together with the OH+ lines trace extended CO photodissociation regions along the rims. The estimated OH+ column density is ~ 1012 - 1013 cm-2. The CH+ (1-0) line was not detected at the sensitivity of our observations. Non-LTE models of the CO excitation were used to constrain the average gas density (n(H2) ~ (1 - 5) × 105 cm-3) and the gas temperature (Tk ~ 20-40 K). Conclusions. The SPIRE spectral-maps suggest that CO arises from dense and shielded clumps in the western rims of the Helix nebula, whereas OH+ and [C i] lines trace the diffuse gas and the UV and X-ray illuminated clump surfaces where molecules reform after CO photodissociation. The [N ii] line traces a more diffuse ionized gas component in the interclump medium.
Published: 18 June 2014
Aims. We report the first detections of OH+ emission in planetary nebulae (PNe). Methods. As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51μm and 672μm to look for new detections. Results. The rotational emission lines of OH+ at 152.99, 290.20, 308.48, and 329.77μm were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27-47 K and 2 × 1010 - 4 × 1011 cm-2, respectively. Conclusions. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff> 100 000 K), suggesting that high-energy photons may play a role in OH+ formation and its line excitation in these objects, as seems to be the case for ultraluminous galaxies.
Published: 18 June 2014
We present the first overview of the Herschel observations of the nearby high-mass star-forming region NGC 7538, taken as part of the Herschel imaging study of OB young stellar objects (HOBYS) Key Programme. These PACS and SPIRE maps cover an approximate area of one square degree at five submillimeter and far-infrared wavebands. We have identified 780 dense sources and classified 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. These 13 clumps have masses in excess of 40 MSun and temperatures below 15 K. They range in size from 0.4 pc to 2.5 pc and have densities between 3 × 103 cm–3 and 4 × 104 cm–3. Spectral energy distributions are then used to characterize their energetics and evolutionary state through a luminosity-mass diagram. NGC 7538 has a highly filamentary structure, previously unseen in the dust continuum of existing submillimeter surveys. We report the most complete imaging to date of a large, evacuated ring of material in NGC 7538 which is bordered by many cool sources.
Published: 21 August 2013
We report on two regularly rotating galaxies at redshift z ~ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ~ 120 ± 7 km s-1 and a gas velocity dispersion of sigmag < 23 km s-1 (1 sigma). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ~ 79 ± 11 km s-1 and sigmag 4 km s-1 (1 sigma). However, the Clone is also consistent with a family of dispersion-dominated models having sigmag = 92 ± 20 km s-1. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.
Published: 30 April 2014
Published online 24 February 2014

The nature and origin of the cold interstellar medium (ISM) in early-type galaxies are still a matter of debate, and understanding the role of this component in galaxy evolution and in fuelling the central supermassive black holes requires more observational constraints. Here, we present a multiwavelength study of the ISM in eight nearby, X-ray and optically bright, giant elliptical galaxies, all central dominant members of relatively low-mass groups. Using far-infrared spectral imaging with the Herschel Photodetector Array Camera & Spectrometer, we map the emission of cold gas in the cooling lines of [C II] 157 μm, [O I] 63 μm and [O Ib] 145 μm. Additionally, we present H-alpha+[N II] imaging of warm ionized gas with the Southern Astrophysical Research (SOAR) telescope, and a study of the thermodynamic structure of the hot X-ray emitting plasma with Chandra. All systems with extended H-alpha emission in our sample (6/8 galaxies) display significant [C II] line emission indicating the presence of reservoirs of cold gas. This emission is cospatial with the optical H-alpha+[N II] emitting nebulae and the lowest entropy soft X-ray emitting plasma. The entropy profiles of the hot galactic atmospheres show a clear dichotomy, with the systems displaying extended emission-line nebulae having lower entropies beyond r >= 1 kpc than the cold-gas-poor systems. We show that while the hot atmospheres of the cold-gas-poor galaxies are thermally stable outside of their innermost cores, the atmospheres of the cold-gas-rich systems are prone to cooling instabilities. This provides considerable weight to the argument that cold gas in giant ellipticals is produced chiefly by cooling from the hot phase. We show that cooling instabilities may develop more easily in rotating systems and discuss an alternative condition for thermal instability for this case.
[Remainder of abstract truncated due to character limitations]

Published: 25 February 2014
— 20 Items per Page
Showing 1 - 20 of 81 results.
21-Dec-2024 07:19 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/Vw7MeY8