INFO 20-1996: Europe's space camera unmasks a cosmic gamma-ray machine
28 November 1996
The European Space Agency's Faint Object Camera in the Hubble Space Telescope has identified a neutron star, the smallest and densest type of star that exists, lying approximately 3000 light-years away in the southern sky. It is 100 million times dimmer than faint stars seen by the unaided eye. Thus the Faint Object Camera lives up to its name by revealing objects in the Universe close to the limit of visibility.The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe.
The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52.
Evading the Glare of an Adjacent Star
The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100 000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space.
The Faint Object
Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce brighter flashes when the electrons hit a phosphor screen. Since Hubble's launch in 1990, the Faint Object Camera has examined many different kinds of cosmic objects, from the moons of Jupiter to remote galaxies and quasars. When the space telescope's optics were corrected at the end of 1993 the Faint Object Camera immediately celebrated the event with the discovery of primeval helium in intergalactic gas.
In their search for Pulsar 1055-52, the astronomers chose a near-ultraviolet filter to sharpen the Faint Object Camera's vision and reduce the adjacent star's huge advantage in intensity. In May 1996, the Hubble Space Telescope operators aimed at the spot which radio astronomers had indicated, as the source of the radio pulsations of Pulsar 1055-52. The neutron star appeared precisely in the centre of the field of view, and it was clearly separated from the glare of the adjacent star. At magnitude 24.9, Pulsar 1055-52 was comfortably within the power of the Faint Object Camera, which can see stars 20 times fainter still.
"The Faint Object Camera is the instrument of choice for looking for neutron stars," says Giovanni Bignami, speaking on behalf of the Italian team. "Whenever it points to a judiciously selected neutron star it detects the corresponding visible or ultraviolet light. The Faint Object Camera has now identified three neutron stars in that way, including Pulsar 1055-52, and it has examined a few that were first detected by other instruments."
Mysteries of the Neutron Stars
The importance of the new result can be gauged by the tally of only eight neutron stars seen so far at optical wavelengths, compared with about 760 known from their radio pulsations, and about 21 seen emitting X-rays. Since the first pulsar was detected by radio astronomers in Cambridge, England, nearly 30 years ago, theorists have come to recognize neutron stars as fantastic objects. They are veritable cosmic laboratories in which Nature reveals the behaviour of matter under extreme stress, just one step short of a black hole.
A neutron star is created by the force of a supernova explosion in a large star, which crushes the star's core to an unimaginable density. A mass greater than the Sun's is squeezed into a ball no wider than a city. The gravity and magnetic fields are billions of times stronger than the Earth's. The neutron star revolves rapidly, which causes it to wink like a cosmic lighthouse as it swivels its magnetic poles towards and away from the Earth. Pulsar 1055-52 spins at five revolutions per second.
At its formation in a supernova explosion, a neutron star is endowed with two main forms of energy. One is heat, at temperatures of millions of degrees, which the neutron star radiates mainly as X-rays, with only a small proportion emerging as visible light. The other power supply for the neutron star comes from its high rate of spin and a gradual slowing of the rotation. By a variety of processes involving the magnetic field and accelerated particles in the neutron star's vicinity, the spin energy of the neutron star is converted into radiation at many different wavelengths, from radio waves to gamma-rays.
The exceptional gamma-ray intensity of Pulsar 1055-52 was first appreciated in observations by NASA's Compton Gamma Ray Observatory. The team in Milan recently used the Hubble Space Telescope to find the distance of the peculiar neutron star Geminga, which is not detectable by radio pulses but is a strong source of gamma-rays (see ESA Information Note 04-96). Pulsar 1055-52 is even more powerful in that respect. About 50 per cent of its radiant energy is gamma-rays, compared with 15 per cent from Geminga and 0.1 per cent from the famous Crab Pulsar, the first neutron star seen by visible light.
Making the gamma-rays requires the acceleration of electrons through billions of volts. The magnetic environment of Pulsar 1055-52 fashions a natural gamma-ray machine of amazing power. The orientation of the neutron star's magnetic field with respect to the Earth may contribute to its brightness in gamma-rays.
Geminga, Pulsar 1055-52 and another object, Pulsar 0656+14, make a trio that the Milanese astronomers call the Three Musketeers. All have been observed with the Faint Object Camera. They are isolated, elderly neutron stars, some hundreds of thousands of years old, contrasting with the 942 year-old Crab Pulsar which is still surrounded by dispersing debris of a supernova seen by Chinese astronomers in the 11th Century. The mysteries of the neutron stars will keep astronomers busy for years to come, and the Faint Object Camera in the Hubble Space Telescope will remain the best instrument for spotting their faint visible light.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Maryland.