Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements
Publication date: 23 August 2008
Authors: Leblanc, F. et al.
Journal: J. Geophys. Res.
Volume: 113
Issue: A08
ID: A08311
Year: 2008
Copyright: American Geophysical Union
We present a new set of observations of Martian aurorae obtained by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express (MEX). Using nadir viewing, several auroral events have been identified on the Martian nightside, all near regions of crustal magnetic fields. For most of these events, two to three consecutive events with variable intensities and separated by a few seconds to several tens of seconds have been observed, whereas simultaneous observations with Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) have been possible. In this paper, we present the data set for these events and discuss the possible correlation between the measured UV emission by SPICAM, the measured downward and/or upward flux of electrons by ASPERA-3 and the total electron content recorded by MARSIS. Despite the limited coverage of SPICAM ultraviolet spectrograph (UVS) on the Martian nightside (essentially in regions of high crustal magnetic fields), there is however a very good correlation between the regions with the locally smallest probability to be on closed crustal magnetic field lines, as derived from Mars Global Surveyor/Electron Reflectometer (MGS/MAG-ER), and the position of an aurora event. This suggests that the crustal magnetic fields, when organized into cusp-like structure, can trigger the few aurorae identified by SPICAM UVS. It confirms also the good probability, in the cases where SPICAM UVS measured UV emissions, that the increase in the measured total electron content by MARSIS and the simultaneous measured precipitating electron flux by the ASPERA-3/Electron Spectrometer may be related to each other.
Link to publication