Asset Publisher

Geological Evidence of Planet-Wide Groundwater System on Mars

Geological Evidence of Planet-Wide Groundwater System on Mars

Publication date: 21 January 2019

Authors: Salese, F., et al.

Journal: Journal of Geophysical Research: Planets
Year: 2019

Copyright: ©2019. The Authors

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.

The scale of groundwater upwelling on Mars, as well as its relation to sedimentary systems, remains an ongoing debate. Several deep craters (basins) in the northern equatorial regions show compelling signs that large amounts of water once existed on Mars at a planet-wide scale. The presence of water-formed features, including fluvial Gilbert and sapping deltas fed by sapping valleys, constitute strong evidence of groundwater upwelling resulting in long term standing bodies of water inside the basins. Terrestrial field evidence shows that sapping valleys can occur in basalt bedrock and not only in unconsolidated sediments. A hypothesis that considers the elevation differences between the observed morphologies and the assumed basal groundwater level is presented and described as the "dike-confined water" model, already present on Earth and introduced for the first time in the Martian geological literature. Only the deepest basins considered in this study, those with bases deeper than −4000 m in elevation below the Mars datum, intercepted the water-saturated zone and exhibit evidence of groundwater fluctuations. The discovery of these groundwater discharge sites on a planet-wide scale strongly suggests a link between the putative Martian ocean and various configurations of sedimentary deposits that were formed as a result of groundwater fluctuations during the Hesperian period. This newly recognized evidence of water-formed features significantly increases the chance that biosignatures could be buried in the sediment. These deep basins (groundwater-fed lakes) will be of interest to future exploration missions as they might provide evidence of geological conditions suitable for life.

Link to publication
Last Update: Sep 1, 2019 8:18:32 AM
22-Jan-2025 13:49 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/WEk42pA

Related Publications

Related Links

Documentation