Radiants of the Leonids 1999 and 2001 obtained by LLTV systems using automatic software tools
Publication date: 01 December 2004
Authors: Koschny, D., et al.
Journal: Earth, Moon and Planets
Volume: 95
Issue: 1-4
Page: 46
Year: 2004
Copyright: Springer
Both amateur and professional meteor groups more and more use Low-Light level TV (LLTV) systems to record meteors. Double-station observations can yield orbit data. However, data analysis normally is still done by hand and thus time consuming. This paper addresses the question whether available automated tools can be used to determine reasonably accurate orbits with minimum human intervention.
The European Space Agency performed several observing campaigns to observe the Leonid meteor stream. In November 1999, the ESA meteor group was stationed at two locations in Southern Spain, in November 2001 at two stations close to Broome in North-Western Australia. Double-station observations with LLTV systems were conducted. The data was recorded on S-VHS video tapes. The tapes were digitized using automatic detection software. Meteor heights, velocities and radiants were computed. This paper shows the results for the two maximum nights. The radiants determined in 1999 show a very large scatter due to unfortunate observing geometry and inaccurate position determination since one of the cameras was moving because of the wind. The 2001 data is excellent and the radiant was determined to be at RA = 153.96°±0.3° and Dec = 21.09°±0.2°. The error bars for individual meteor radiants are about 0.2° to 0.4°. This demonstrates that is indeed possible to determine good radiant positions using totally automated tools. Orbits, on the other hand, are not well defined due to the fact that the velocity of individual meteors shows large errors. Reasons for this are described.
Link to publication