Publication archive

Publication archive

Published online 02 October 2012

Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity.
Aims. In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision.
Methods. This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton.
Results. In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad H-alpha line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time.
Conclusions. It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage.

Published: 03 October 2012

Made available online before print publication

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m²-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of ~12 m² (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.

Published: 02 September 2012
Between July 2005 and July 2011 Mars Express performed 50 Deimos approaches. 136 super resolution channel (SRC) images were acquired and used for astrometric (positional) measurements of the small Martian satellite. For this study, we have developed a new technique, in which the center-of-figure of the odd-shaped Deimos is determined by fitting the predicted to the observed satellite limb. The prediction of the limb was made based on the moon's known shape model. The camera pointing was verified and corrected for by means of background star observations. We obtained a set of spacecraft-centered Deimos coordinates with accuracies between 0.6 and 3.6 km (1Ã). Comparisons with current orbit models indicate that Deimos is ahead of or falling behind its predicted position along its track by as much as +3.4 km or -4.7 km, respectively, depending on the chosen model. Our data may be used to improve the orbit models of the satellite.
Published: 25 September 2012
Reference: SRE-SA/LOFT/2011-001

This document records the scientific requirements for the Large Observatory for X-ray Timing (LOFT). These are the reference requirements through which the Mission Requirements Document will be derived.

Published: 12 September 2013
This document describes the detailed scientific requirements for the MarcoPolo-R mission. These requirements are derived from discussions by the MarcoPolo-R Science Study Team (SST) and are based on the scientific objectives as described in the MarcoPolo-R Proposal to ESA's Cosmic Vision programme.

The first issue of this document served as a starting point for an ESA-internal study in the Concurrent Design Facility (CDF). It was left unchanged for the industrial studies, but underwent a few updates driven both by the industrial studies and the payload-related studies.

In case of the selection of this mission for implementation, another update of the document may be required to reflect updates in the scientific progress during the time of the study, resulting in an Issue 2.

Published: 20 September 2012
Reference: SRE-PA/2011.074/RQ/MG

STE-QUEST is an M-class mission candidate for the M3 slot within the Cosmic Vision programme, for a planned launch between 2022 and 2024. STE-QUEST, with 3 other science missions, was recommended by the Space Science Advisory Committee (SSAC) to enter an assessment study (Phase 0), starting by an ESA internal study followed by parallel industrial study activities. Within the M3 boundary conditions, the readiness for launch by end 2022/2024 is a severe requirement which in practice requires designing the space segment without major technology developments and with minimum developments risks. Therefore, only technologies with estimated Technology Readiness Levels (TRL) of at least 5 by the end of the Phase A (estimated at the end of 2014) may be used.

This document aims at providing a complete and comprehensive list of all high level mission requirements (including spacecraft and payload, launcher, ground segment and operations) necessary to achieve the science goals detailed in [STE-QUEST Science Requirements Document, FPM-SA-Dc-00001]. It is hence an applicable document that shall be complied with for all mission design activities. The MRD will be further reviewed matching the results of future study phases (e.g. definition phase) to finally evolve in the System Requirements Document at the start of the implementation phase.

Published: 19 September 2012
By examining electron density profiles from the Mars Express Radio Science Experiment MaRS, we show that the vertical structure of the dayside ionosphere of Mars is more variable and more complex than previously thought. The top of the ionosphere can be below 250 km (25% occurrence rate) or above 650 km (1%); the topside ionosphere can be well-described by a single scale height (10%) or two/three regions with distinct scale heights (25% or 10%), where those scale heights range between tens and hundreds of kilometers; the main layer of the ionosphere can have a sharply pointed (5%), flat-topped (6%), or wavy (8%) shape, in contrast to its usual Chapman-like shape; a broad increase in electron density is detected at 160-180 km (10%); a narrow increase in electron density is sometimes found in strongly-magnetized regions; and an additional layer is present between the M1 and M2 layers (3%).
Published: 19 September 2012
Reference: SRE-PA/2011.076/MarcoPolo-R

This is a Mission Requirements Document (MRD) to be used as an Applicable Document in the MarcoPolo-R industrial assessment study. The purpose of the MRD is to provide all high-level mission-level requirements (including spacecraft and payload, launcher, ground segment and operations) necessary to achieve the science goals detailed in [MarcoPolo-R Science Requirements Document (SRD)] for the MarcoPolo-R industrial system design studies running through 2012/2013.

It includes functional and performance requirements down to the sub-system level which can be defined at this stage. Later on in the course of the definition phase, it will result into two self-standing documents, i.e. the Mission Requirements Document and the System Requirements Document.

Recording and tracking of changes as well as giving a brief rationale is very important. The traceability of the requirements is paramount in order to make this document and its associated requirements easy to read and to understand at any stage of the mission assessment and possibly later definition phase, should this mission be selected.

This is issue 3.2 of the MRD. It has been updated after the baseline selection review in the course of the assessment phase. It will be reviewed as part of the assessment phase and will be updated following the Preliminary Requirement Review at the end of 2013.

Published: 18 September 2012
Reference: SRE-PA/2011.039/

This document aims at providing the description of the EChO reference payload complement. The payload complement comprises the following elements:

  • The telescope
  • The common optics, common in the sense that all alternative instrument designs must use this same set of fore-optics
  • The instruments:
    • The science instrument, defined as a spectrometer covering the complete wavelength range required in [EChO MRD (Mission Requirements Document), SRE-PA/2011.038/]. This wavelength range is split into different science channels.
    • The Fine Guidance Sensor (FGS, acting as a non-scientific instrument), also required in [EChO MRD (Mission Requirements Document), SRE-PA/2011.038/] to answer the pointing needs of the spacecraft.
It is also important to highlight that not all elements of this payload complement are applicable to all partners: specificities are foreseen with each partner, i.e. industry and instrument team(s) will have different responsibilities.

Published: 15 September 2012
During the first half of the universe's life, a heyday of star formation must have occurred because many massive galaxies are in place after that epoch in cosmic history. Our observations with the revolutionary Herschel Space Observatory reveal vigorous optically obscured star formation in the ultra-massive hosts of many powerful high-redshift 3C quasars and radio galaxies. This symbiotic occurrence of star formation and black hole driven activity is in marked contrast to recent results dealing with Herschel observations of X-ray-selected active galaxies. Three archetypal radio galaxies at redshifts 1.132, 1.575, and 2.474 are presented here, with inferred star formation rates of hundreds of solar masses per year. A series of spectacular coeval active galactic nucleus/starburst events may have formed these ultra-massive galaxies and their massive central black holes during their relatively short lifetimes.
Published: 15 September 2012
Available online 31 August 2012

The planet-encircling springtime storm in Saturn's troposphere (December 2010-July 2011) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA's IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35°N (B1 and B2) between January-April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single 'stratospheric beacon' near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85 km) post-merger; and (III) the mature phase characterised by slow cooling (0.11 ± 0.01 K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6 ± 1.4 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2 mbar, moving west with a near-constant velocity of 2.70 ± 0.04 deg/day (-24.5 ± 0.4 m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period. [Abstract abbreviated due to character limitations.]

Published: 01 September 2012
The Large-Yield Radiometer (LYRA) is a radiometer that has monitored the solar irradiance at high cadence and in four pass bands since January 2010. Both the instrument and its spacecraft, PROBA2 (Project for OnBoard Autonomy), have several innovative features for space instrumentation, which makes the data reduction necessary to retrieve the long-term variations of solar irradiance more complex than for a fully optimized solar physics mission. In this paper, we describe how we compute the long-term time series of the two extreme ultraviolet irradiance channels of LYRA and compare the results with those of SDO/EVE. We find that the solar EUV irradiance has increased by a factor of 2 since the last solar minimum (between solar cycles 23 and 24), which agrees reasonably well with the EVE observations.
Published: 01 September 2012
We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90° to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, phi = acos B x B , from -90° to -10°. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in phi) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.
Published: 30 August 2012
Supermassive black holes (SMBHs; mass is greater than or approximately 105 times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.
Published online on 2 August 2012.
Published: 25 August 2012
Available online 23 August 2012

While landing on Titan, several instruments onboard Huygens acquired measurements that indicate the probe did not immediately come to rest. Detailed knowledge of the probe's motion can provide insight into the nature of Titan's surface. Combining accelerometer data from the Huygens Atmospheric Structure Instrument (HASI) and the Surface Science Package (SSP) with photometry data from the Descent Imager/Spectral Radiometer (DISR) we develop a quantitative model to describe motion of the probe, and its interaction with the surface. The most likely scenario is the following. Upon impact, Huygens created a 12 cm deep hole in the surface of Titan. It bounced back, out of the hole onto the flat surface, after which it commenced a 30-40 cm long slide in the southward direction. The slide ended with the probe out of balance, tilted in the direction of DISR by around 10°. The probe then wobbled back and forth five times in the north-south direction, during which it probably encountered a 1-2 cm sized pebble. The SSP provides evidence for movement up to 10 s after impact. This scenario puts the following constraints on the physical properties of the surface ... [Abstract abbreviated due to character limitations.]

Published: 24 August 2012
In the last few years Cassini-VIMS, the Visible and Infrared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione, G., Capaccioni, F., McCord, T.B., Coradini, A., Cerroni, P., Bellucci, G., Tosi, F., D'Aversa, E., Formisano, V., Brown, R.H., Baines, K.H., Bibring, J.P., Buratti, B.J., Clark, R.N., Combes, M., Cruikshank, D.P., Drossart, P., Jaumann, R., Langevin, Y., Matson, D.L., Mennella, V., Nelson, R.M., Nicholson, P.D., Sicardy, B., Sotin, C., Hansen, G., Hibbitts, K., Showalter, M., Newman, S. [2007]. Icarus 186, 259-290, paper I) and their distribution across the satellites' hemispheres (Filacchione, G., Capaccioni, F., Clark, R.N., Cuzzi, J.N., Cruikshank, D.P., Coradini, A., Cerroni, P., Nicholson, P.D., McCord, T.B., Brown, R.H., Buratti, B.J., Tosi, F., Nelson, R.M., Jaumann, R., Stephan, K. [2010]. Icarus 206, 507-523, paper II), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2264 disk-integrated observations of the satellites and a 12×700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. Using different VIS and IR spectral indicators, e.g. spectral slopes and band depths, we perform a comparative analysis of these data aimed to measure the distribution of water ice and red contaminant materials across Saturn's system. The average surface regolith grain sizes are estimated with different indicators through comparison with laboratory and synthetic spectra. [Abstract abbreviated due to character limitations.]
Published: 16 August 2012
This paper describes Herschel observations of the nearby (8.5 pc) G5V multi-exoplanet host star 61 Vir at 70, 100, 160, 250, 350 and 500 micron carried out as part of the DEBRIS survey. These observations reveal emission that is significantly extended out to a distance of >15 arcsec with a morphology that can be fitted by a nearly edge-on (77° inclination) radially broad (from 30 AU out to at least 100 AU) debris disc of fractional luminosity 2.7 × 10-5, with two additional (presumably unrelated) sources nearby that become more prominent at longer wavelengths. Chance alignment with a background object seen at 1.4 GHz provides potential for confusion, however, the star's 1.4 arcsec/yr proper motion allows archival Spitzer 70 m images to confirm that what we are interpreting as disc emission really is circumstellar. Although the exact shape of the disc's inner edge is not well constrained, the region inside 30 AU must be significantly depleted in planetesimals. This is readily explained if there are additional planets outside those already known (i.e. in the 0.5-30 AU region), but is also consistent with collisional erosion. We also find tentative evidence that the presence of detectable debris around nearby stars correlates with the presence of the lowest mass planets that are detectable in current radial velocity surveys. Out of an unbiased sample of the nearest 60 G stars, 11 are known to have planets, of which six (including 61 Vir) have planets that are all less massive than Saturn, and four of these have evidence for debris. The debris towards one of these planet hosts (HD 20794) is reported here for the first time ... [Abstract abbreviated due to character limitations.]
Published: 02 July 2012
Lower hybrid drift waves (LHDW) are commonly observed at plasma boundaries in space and laboratory, often having the strongest measured electric fields within these regions. We use data from two of the Cluster satellites (C3 and C4) located in the Earth's magnetotail and separated by a distance of the order of the electron gyroscale. These conditions allow us, for the first time, to make cross-spacecraft correlations of the LHDW and to determine the phase velocity and wavelength of the LHDW. Our results are in good agreement with the theoretical prediction. We show that the electrostatic potential of LHDW is linearly related to fluctuations in the magnetic field magnitude, which allows us to determine the velocity vector through the relation: Integral_of delta_E dt v = phi_delta_B_par . The electrostatic potential fluctuations corresponds to ~10 per cent of the electron temperature, which suggests that the waves can strongly affect the electron dynamics.

Published online on 31 July 2012.
Published: 04 August 2012
Coronal radio-sounding experiments were carried out using the S-band (2.3 GHz) and X-band (8.4 GHz) signals of the ESA Mars Express, Venus Express, and Rosetta spacecraft during five superior conjunctions occurring in 2004, 2006 (3×), and 2008/2009. Differential frequency and propagation delay (ranging) observations were recorded during these opportunities over the better part of a solar cycle, yielding information on the large-scale structure of the coronal electron-density distribution and its variations, including fluctuations on time scales from seconds to hours. These results concern primarily regions of slow solar wind because the radio propagation path is generally confined to the low heliolatitude regions by the conjunction. The mean frequency fluctuation and total electron content are determined as a function of heliocentric distance, and, with a few exceptions caused by streamers and CMEs, are found to be consistent with previous results from experiments on Ulysses. Dense coronal streamers and several coronal mass ejection (CME) events were identified in the radio-frequency data, some of which were observed in white light by the LASCO coronagraphs onboard SOHO. For those events with sufficient mutual coverage, good correlations are found between the electron-content fluctuations and structure imaged by the LASCO instrument.
Published: 16 July 2012
Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.
Published: 06 July 2012
5-Jul-2020 17:05 UT

ShortUrl Portlet

Shortcut URL