Publication archive

Publication archive

The number and complexity of systems that control Space Science Missions continues to increase. As a result, it is desirable to improve the efficiency of these systems and, in particular, their performance and their productivity. In this paper, we set out a strategy to achieve this goal. In order to talk about improving the Performance and Productivity of a system we need to discuss the functional architecture of the system. In order to make progress, our strategy is to develop a generic methodology that decomposes the functional architecture of a Space Science Mission System and uses this decomposition to identify areas where improvements can be made. This paper concentrates on the decomposition of one specific component, namely the Plan Management System. The purpose of the Plan Management System is to produce an operation plan that contains the directives that will operate the various nodes, i.e. physical parts, of the system such as the ground stations, the spacecraft, the instruments, or even human beings (when these are following specific instructions). In order to be generic, the decomposition of the Plan Management System must make no assumptions about the purpose and implementation choices that must ultimately be made. In order to describe a functional architecture, it must also make no assumptions about the nature and purpose of the nodes that the system will operate or the nodes on which it will run. In particular, it makes no assumptions as to whether the execution of the Plan Management System components is manual or automated or whether the functions will be executed on the ground or in space. -- Remainder of abstract is truncated --
Published: 02 June 2009
Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole, suggesting the possibility of a subsurface ocean. These plume particles are the dominant source of Saturn's E ring. A previous in situ analysis of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus' rocky core and liquid water. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (0.5-2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra is in good agreement with our results. In the E ring the upper limit for spectroscopy is insufficiently sensitive to detect the concentrations we found.
Published: 26 June 2009
The first meeting of the Fundamental Physics Roadmap Advisory Team was held on 2-3 June 2009. This report was prepared by the Chair and Secretary of the FPR-AT.
Published: 23 June 2009
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.
Published: 23 June 2009
Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (beta Cephei) pulsator.
Published: 20 June 2009
In proceedings of the International Conference 'Future perspectives of space plasma and particle instrumentation and international collaborations', held 1-3 November 2006 in Tokyo, Japan.

Using electron and magnetic field data obtained from the Cluster satellites, we identify the spatial distribution of highly accelerated electron distributions up to 10 keV. They are generally isotropic and form flat-top distributions in the phase space. These distributions are observed in the vicinity of the X line associated with the quadrupole-like magnetic field and energetic ions, throughout the plasma sheet. In some cases, these distributions are quasi-stable, continuously observed for a few minutes with a stable Bz polarity and low current density in the center of the plasma sheet.

Published: 17 June 2009
In proceedings of the International Conference 'Future perspectives of space plasma and particle instrumentation and international collaborations', held 1-3 November 2006 in Tokyo, Japan.

With Cluster observations in the magnetotail, we study the dynamics of plasma sheet thinning and stretching in a typical growth phase event of September 12, 2001. The thinning and stretching proceed in parallel, with transient variations. The pre-onset value is Bz~1.5 nT, J~8 nA/m2. The current density increase is not accompanied with a corresponding number density increase. A large (>5 nT) guide field along the cross-tail current direction was registered. An embedded current sheet structure was detected and, therefore, caution is required if making thickness estimations.

Published: 17 June 2009
This ESA special publication is dedicated to the scientific investigations of Mars by Mars Express, giving a detailed overview of the scientific results of the mission so far.

Contents:

Foreword
Overview
Mars Express: Summary of Scientific Results
A. Chicarro, O.G. Witasse & A.P. Rossi
1
Scientific Instruments
HRSC: High Resolution Stereo Camera
G. Neukum, R. Jaumann and the Co-Investigator Team
15
OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité
J.-P. Bibring, Y. Langevin, F. Altieri et al.
75
MARSIS: Mars Advanced Radar for Subsurface and Ionospheric Sounding
J.J. Plaut, G. Picardi, T.W. Watters et al.
97
PFS: Planetary Fourier Spectrometer
V. Formisano, F. Angrilli, G. Arnold et al.
115
SPICAM: Spectroscopy for the Investigation of the Characteristics of the Atmospheric of Mars
J.-L. Bertaux, O. Korablev, D. Fonteyn et al.
139
ASPERA-3: Analyser of Space Plasmas and Energetic Neutral Atoms
R. Lundin, S. Barabash and the ASPERA-3 team
199
MaRS: Mars Express Radio Science Experiment
M. Pätzold, S. Tellmann, T. Andert et al.
217
Operations and Archiving
Mars Express Science Planning and Operations
R. Pischel & T. Zegers
249
Spacecraft and Payload Data Handling
J. Zender, F. Delhaise, C. Arviset et al.
257
Acronyms and Abbreviations279

Published: 16 June 2009
We report the first direct determination of the dissipation range of magnetofluid turbulence in the solar wind at the electron scales. Combining high resolution magnetic and electric field data of the Cluster spacecraft, we computed the spectrum of turbulence and found two distinct breakpoints in the magnetic spectrum at 0.4 and 35 Hz, which correspond, respectively, to the Doppler-shifted proton and electron gyroscales, frho_p and frho_e. Below frho_p, the spectrum follows a Kolmogorov scaling f -1.62, typical of spectra observed at 1 AU. Above frho_p, a second inertial range is formed with a scaling f -2.3 down to frho_e. Above frho_e, the spectrum has a steeper power law ~f 4.1 down to the noise level of the instrument. We interpret this as the dissipation range and show a remarkable agreement with theoretical predictions of a quasi-two-dimensional cascade into Kinetic Alfvén Waves (KAW).
Published: 11 June 2009
This paper presents a study of the use of a one-dimensional Vlasov Hybrid Simulation (VHS) computer code to simulate the dynamical spectra (i.e. frequency versus time spectrograms) of ELF/VLF chorus signals (from ~a fraction to ~10 kHz). Recently excellent measurements of chorus have been made in the source region close to the geomagnetic equator aboard the four spacecraft Cluster mission. Using Cluster data for wave amplitude, which is up to 300 pT, local gyrofrequency, cold plasma density, and L-shell, observed chorus signals are reproduced with remarkable fidelity and, in particular, sweep rates in the range 1-10 kHz result as observed. Further, we find that the sweep rate is a falling function of increasing cold plasma density, again in accord with observations. Finally, we have satisfactorily simulated the rather rare falling frequency elements of chorus which are sometimes observed aboard Cluster in the generation region. For both rising and falling chorus we have presented detailed structural analyses of the generation regions. The main contributor to the frequency sweep rate is primarily the establishment of wave number/frequency gradients across the generation region by the out of phase component of the resonant particle current. The secondary contributor is the shortening of the wavelength of resonant particle current relative to that of the wave field. In view of the close agreement between observation and simulation, we conclude that nonlinear electron cyclotron resonance is indeed the mechanism underlying the generation of chorus signals just outside the plasmasphere.
Published: 09 June 2009
We present results from a 40 ks XMM-Newton observation of the X-ray filament coincident with the southeast edge of the Centaurus A Northern Middle Radio Lobe (NML). We find that the X-ray filament consists of five spatially resolved X-ray knots embedded in a continuous diffuse bridge. The spectrum of each knot is well fitted by a thermal model with temperatures ranging from 0.3 to 0.7 keV and subsolar elemental abundances. In four of the five knots, nonthermal models are a poor fit to the spectra, conclusively ruling out synchrotron or IC/CMB mechanisms for their emission. The internal pressures of the knots exceed that of the ambient interstellar medium or the equipartition pressure of the NML by more than an order of magnitude, demonstrating that they must be short lived (~3 × 106 yr). Based on energetic arguments, it is implausible that these knots have been ionized by the beamed flux from the active galactic nucleus of Cen A or that they have been shock heated by supersonic inflation of the NML. In our view, the most viable scenario for the origin of the X-ray knots is that they are the result of cold gas shock heated by a direct interaction with the jet. The most plausible model of the NML is that it is a bubble from a previous nuclear outburst that is being re-energized by the current outburst. The northeast inner lobe and the large-scale jet are lossless channels through which the jet material rapidly travels to the NML in this scenario. We also report the discovery of a large-scale (at least 35 kpc radius) gas halo around Cen A.
Published: 06 June 2009
Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40°) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40° N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.
Published: 05 June 2009
Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.
Published: 29 May 2009
Since the discovery of the first broad iron-K line in 1995 from the Seyfert Galaxy MCG 6-30-15, broad iron-K lines have been found in several other Seyfert galaxies, from accreting stellar mass black holes and even from accreting neutron stars. The iron-K line is prominent in the reflection spectrum created by the hard X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron-L line emission should be detectable when the iron abundance is high. Here we report the first discovery of both iron-K and L emission, using XMM-Newton observations of the Narrow-Line Seyfert 1 Galaxy 1H 0707-495. The bright Fe-L emission has enabled us, for the first time, to detect a reverberation lag of 30 s between the direct X-ray continuum and its reflection from matter falling into the hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light-minute, from the event horizon of a rapidly-spinning, massive black hole.
Published: 29 May 2009
MIRI is the Mid InfraRed Instrument for the James Webb Space Telescope (JWST) and will provide imaging, coronography and integral field spectroscopy in the range between 4.9 and 28.6 micron. We summarise solar system observations which may be possible with this instrument, drawing on examples of observations made with previous space missions such as IRAS, ISO and Spitzer.

Presented at the conference "Future Ground Based Solar System Research, Isola d'Elba, 8-12 September 2008"

Published: 27 May 2009
Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.
Published: 22 May 2009
The processes in the atmosphere, interior, surface, and near-space environment that together maintain the climate on Venus are examined from the specific point of view of the advances that are possible with new data from Venus Express and improved evolutionary climate models. Particular difficulties, opportunities, and prospects for the next generation of missions to Venus are also discussed.
Published: 21 May 2009
Ground-based instruments and a number of space missions have contributed to our knowledge of the plasmasphere since its discovery half a century ago, but it is fair to say that many questions have remained unanswered. Recently, NASA's Image and ESA's Cluster probes have introduced new observational concepts, thereby providing a non-local view of the plasmasphere. Image carried an extreme ultraviolet imager producing global pictures of the plasmasphere. Its instrumentation also included a radio sounder for remotely sensing the spacecraft environment. The Cluster mission provides observations at four nearby points as the four-spacecraft configuration crosses the outer plasmasphere on every perigee pass, thereby giving an idea of field and plasma gradients and of electric current density. This paper starts with a historical overview of classical single-spacecraft data interpretation, discusses the non-local nature of the Image and Cluster measurements, and emphasizes the importance of the new data interpretation tools that have been developed to extract non-local information from these observations. The paper reviews these innovative techniques and highlights some of them to give an idea of the flavor of these methods. In doing so, it is shown how the non-local perspective opens new avenues for plasmaspheric research.
Published: 16 May 2009
Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 +- 0.05 kilometers (km), 2574.36 +- 0.03 km, and 2574.91 +- 0.11 km, respectively; its mean radius is 2574.73 +- 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most-but not all-of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.
Published: 16 May 2009
LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.
Published: 08 May 2009
14-Jul-2020 12:11 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/dAGeRrW