Publication archive

Publication archive

Solitary nonlinear (deltaB/B >> 1) electromagnetic pulses have been detected in Earth's geomagnetic tail accompanying plasmas flowing at super-Alfvénic speeds. The pulses in the current sheet had durations of ~5 s, were left-hand circularly polarized, and had phase speeds of approximately the Alfvén speed in the plasma frame. These pulses were associated with a field-aligned current J|| and observed in low density (~0.3 cm-3), high temperature (Te~Ti~3x107 K), and beta~10 plasma that included electron and ion beams streaming along B. The wave activity was enhanced from below the ion cyclotron frequency to electron cyclotron and upper hybrid frequencies. The detailed properties suggest the pulses are nonlinearly steepened ion cyclotron or Alfvén waves.
Published: 28 June 2007
Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null-null line that connects them, and associated fans and spines in the magnetotail of the Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be ~0.7+-0.3di and an associated oscillation is identified as a lower-hybrid wave with wavelength ~de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step towards establishing an observational framework of 3D reconnection.
Published: 25 June 2007
A key feature of collisionless magnetic reconnection is the formation of Hall magnetic and electric field structure in the vicinity of the diffusion region. Here we present multi-point Cluster observations of a reconnection event in the near-Earth magnetotail where the diffusion region was nested by the Cluster spacecraft; we compare observations made simultaneously by different spacecraft on opposite sides of the magnetotail current sheet. This allows the spatial structure of both the electric and magnetic field to be probed. It is found that, close to the diffusion region, the magnetic field displays a symmetric quadrupole structure. The Hall electric field is symmetric, observed to be inwardly directed on both sides of the current sheet. It is large (~40 mV m-1) on the earthward side of the diffusion region, but substantially weaker on the tailward side, suggesting a reduced reconnection rate reflected by a similar reduction in Ey. A small-scale magnetic flux rope was observed in conjunction with these observations. This flux rope, observed very close to the reconnection site and entrained in the plasma flow, may correspond to what have been termed secondary islands in computer simulations. The core magnetic field inside the flux rope is enhanced by a factor of 3, even though the lobe guide field is negligible. Observations of the electric field inside the magnetic island show extremely strong (~100 mV m-1) fields which may play a significant role in the particle dynamics during reconnection.
Published: 21 June 2007
  • Hubble Status
  • Spectral Signal-to-Noise
  • Staff Update
  • Re-activation of the ACS Solar Blind Channel (SBC)
  • Scisoft VII - with VO Support
  • Hubblecast: A Video Podcast from ST-ECF
Published: 16 June 2007
The NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2 recorded 4pi solid angle images of charged particles (E >180 keV) spiraling around the magnetic field lines in the near-Earth plasma sheet (at ~ -7 RE, equatorial dawn-to-night side) during a geomagnetic storm (Dst =-219 nT) on August 24, 2005. Energetic ion beam events characterized by symmetrical, ring-like, solid angle distributions around ambient magnetic field lines were observed during a 34-minute traversal of the plasma sheet by the TC-2 spacecraft. Also, observations during these multiple crossings of the plasma sheet were monitored by the magnetometer experiment (FGM) aboard the same spacecraft. During each crossing, a whistler-mode chorus enhancement was observed in the anisotropic area by the TC-2 low frequency electromagnetic wave detector (LFEW/TC-2) at a frequency just above that of the local lower hybrid wave. A comparison of the ion pitch angle distribution (PAD) map with the ambient magnetic field shows that an enhancement in the field aligned energetic ion flux was accompanied by tailward stretching of the magnetic field lines in the plasma sheet. In contrast, the perpendicular ion-flux enhancement was accompanied by a signature indicating the corresponding shrinkage of the magnetic field lines in the plasma sheet.
-- Remainder of abstract truncated --
Published: 16 June 2007
An analysis technique, termed MRA (magnetic rotation analysis), has been designed to probe three-dimensional magnetic field topology. It is based on estimating the gradient tensor of four-point measurements of the magnetic field which have been taken by the Cluster mission. The method first constructs the symmetrical magnetic rotation tensor and in general terms deduces the rotation rate of magnetic field along one arbitrary direction. In particular, the maximum, medium, and minimum magnetic rotation rates along corresponding characteristic directions of a magnetic structure can be obtained. The value of the curvature of a magnetic field line, for example, is given by the magnetic rotation rate along the magnetic unit vector and its corresponding radius of curvature is readily obtained. MRA has been applied here to analyze the geometrical structure of two distinct magnetospheric structures, i.e., the tail current sheet and the tail flux rope. The normal of the current sheet is the direction at which the magnetic field has the largest rotation rate. The half thickness of the one-dimensional neutral sheet can also be determined from the reciprocal of the maximum magnetic rotation rate. The advantage of the MRA method is that not only it can determine the orientation but also the internal geometrical configuration and spatial scale of the magnetic structures. A key feature of the MRA method is that it provides the detailed picture of the magnetic rotation point by point through any crossing of the current sheet. As a result, the thickness of the neutral sheet (NS) can be explicitly demonstrated to vary with time, as indicated in one case study, where the NS becomes thicker after the onset of a substorm. - Remainder of abstract truncated -
Published: 13 June 2007
This document provides an overview of the Near Earth Asteroid Sample Return system design study. The Near Earth Asteroid Sample Return is one of ESA's Technology Reference Studies (TRS), which provide a focus for the development of strategically important technologies that are of likely relevance for future scientific missions. This is accomplished through the study of several technologically demanding and scientifically interesting mission concepts, which are not part of the ESA science programme. The TRSs subsequently act as a reference for possible future technology development activities.

Link to publication Study Overview
Link to publication Mission Analysis Annex

Published: 31 May 2007
Nonlinear isolated electrostatic solitary waves (ESWs) are observed routinely at many of Earth's major boundaries by the Wideband Data (WBD) plasma wave receivers that are mounted on the four Cluster satellites. The current study discusses two aspects of ESWs: their characteristics in the magnetosheath, and their propagation in the magnetosheath and in the auroral acceleration (upward current) region. The characteristics (amplitude and time duration) of ESWs detected in the magnetosheath are presented for one case in which special mutual impedance tests were conducted allowing for the determination of the density and temperature of the hot and cold electrons. These electron parameters, together with those from the ion experiment, were used as inputs to an electron acoustic soliton model as a consideration for the generation of the observed ESWs. The results from this model showed that negative potential ESWs of a few Debye lengths (10-50 m) could be generated in this plasma. Other models of ESW generation are discussed, including beam instabilities and spontaneous generation out of turbulence. The results of two types of ESW propagation (in situ and remote sensing) studies are also presented. - Remainder of abstract truncated -
Published: 03 June 2007
We examine the near-Earth Interplanetary Coronal Mass Ejection (ICME) apparently related to the intense Solar Energetic Particle (SEP) event of 20 January 2005. Our purpose is to contribute to the understanding of the macroscopic structure, evolution and dynamics of the solar corona and heliosphere. Using Cluster, ACE and Wind data in the solar wind, and Geotail data in the magnetosheath, we perform a multi-spacecraft analysis of the ICME-driven shock, post-shock magnetic discontinuities and ejecta. Traversals by the well-separated near-Earth spacecraft provide a coherent picture of the ICME geometry. Following the shock, the ICME sequence starts with a hot pileup, i.e., a sheath, followed by a fast ejecta characterised by a non-compressive density enhancement (NCDE), which is caused essentially by an enrichment in helium. The plasma and magnetic observations of the ejecta are consistent with the outskirts of a structure in strong expansion, consisting of nested magnetic loops still connected to the Sun. Within the leading edge of the ejecta, we establish the presence of a tilted current sheet substructure. An analysis of the observations suggests that the tilted current sheet is draped within the overlying cloud canopy, ahead of a magnetic cloud-like structure. The flux rope interpretation of this structure near L1, confirmed by observations of the corresponding magnetic cloud, provided by Ulysses at 5.3 AU and away from the Sun-Earth line, indicates that the bulk of the cloud is in the northwest sector as seen from the Earth, with its axis nearly perpendicular to the ecliptic. - Remainder of abstract truncated -
Published: 30 May 2007
The processes of nonadiabatic ion acceleration occurring in the vicinity of magnetic neutral lines produce highly accelerated (up to 2500 km/s) field-aligned ion beams (beamlets) with transient appearance streaming earthward in the plasma sheet boundary layer (PSBL) of the Earth's magnetotail. Previous studies of these phenomena based on single spacecraft (s/c) missions supported the view that beamlets are temporal transients, since the typical time of a beamlet observation at a given s/c very rarely exceeds ~1-2 min. Now multipoint Cluster observations have led to a new understanding of these phenomena with a spatial rather than a temporal structure. On the basis of 3-year Cluster measurements made in the PSBL, we present statistical evaluation of the beamlet duration (at least 5-15 min) and confirm well-manifested localization of the beamlet along Z and in some cases along Y directions, i.e., approximately across the lobe magnetic field. Earlier results reporting shorter beamlet observations could be understood by invoking not only PSBL flapping motions but also of an additional effect revealed by Cluster: earthward propagation of kink-like perturbations along the beamlet filaments. Phase velocity of these perturbations is of the order of the local Alfven velocity (V ~ 600-1400 km/s) and related fast flappings of localized beamlet structures in the Y-Z direction significantly decreasing the time of their observation at a given spacecraft. Multipoint observations of beamlets revealed that they represent long-living (~5-15 min) plasma filaments elongated along the lobe magnetic field (~60-100RE) and strongly localized in direction perpendicular to the PSBL-lobe boundary (~0.2-0.7RE). In some cases, it was also possible to estimate the width of beamlet in dawn-dusk direction which was of the order of fractions of RE.
Published: 25 May 2007
We report on magnetically conjugate Cluster and the Defense Meteorological Satellite Program (DMSP) satellite observations of subauroral ion drifts (SAID) during moderate geomagnetic activity levels on 8 April 2004. To our knowledge, the field-aligned separation of DMSP and Cluster (~28,000 km) is the largest separation ever analyzed with respect to the SAID phenomenon. Nonetheless, we show coherent, subauroral magnetosphere-ionosphere (MI) coupling along an entire field line in the post-dusk sector. The four Cluster satellites crossed SAID electric field channels with meridional magnitude EM of 25 mV/m in situ and latitudinal extent DeltaLambda ~ 0.5° in the southern and northern hemispheres near 07:00 and 07:30 UT, respectively. Cluster was near perigee (R ~ 4 RE) and within 5° (15°) of the magnetic equator for the southern (northern) crossing. The SAID were located near the plasmapause-within the ring current-plasmasphere overlap region. Downward field-aligned current signatures were observed across both SAID crossings. The most magnetically and temporally conjugate SAID field from DMSP F16A at 07:12 UT was practically identical in latitudinal size to that mapped from Cluster. Since the DMSP ion drift meter saturated at 3000 m/s (or ~114 mV/m) and the electrostatically mapped value for EM from Cluster exceeded 300 mV/m, a magnitude comparison of EM was not possible. Although the conjugate measurements show similar large-scale SAID features, the differences in substructure highlight the physical and chemical diversity of the conjugate regions.
Published: 25 May 2007
The XEUS payload module accommodation study is the basis for the forthcoming XEUS mission system study. The main objectives of the accommodation study are
  • to define the preliminary Detector SpaceCraft PayLoad Module (DSC PL design)
  • to identify the resources drivers
  • to define the interfaces
  • to assess the feasibility with core and extended instruments configuration
  • to identify the potential solutions for cryogenic chain
  • to identify the technology development and the critical issues
The Xeus mission goals are not achievable by means of a monolithic X-ray telescope but requires two satellites in a formation flying configuration at L2:
  • The Mirror SpaceCraft (MSC) hosting the Telescope Module, a circular X-ray composite optics with a diameter of 4.25 metres
  • The Detector SpaceCraft (DSC) hosting the Payload Module with core instruments of Wide Field Imager (WFI) and Narrow Filed Imager (NFI)
In the L2 Halo orbit, the MSC and DSC in formation flying, will operate like a large X-ray observatory with a focal length of 35 metres.
Published: 23 March 2007
XEUS (X-ray Evolving Universe Spectroscopy) is one of the missions under consideration by ESA for its Cosmic Vision programme of advanced space exploration concepts set for launch in the 2015-2025 timeframe. Following-on from ESA successes in space observatories like XMM-Newton, XEUS relies on a number of innovative technologies to explore the universe at X-Ray wavelengths (e.g., micropore optics, formation flying control and detector and cooling technologies). Although the launch of XEUS is still some years away, the technology developments needed to meet the exacting science requirements mean that an early start is required to ensure that these technologies can be fully tested and qualified beforehand. At the same time this will enable XEUS to take full advantage of additional performance that these technologies can offer and deliver exciting new science. The XEUS Instrument Accommodation study was specifically focussed on assessing the spacecraft resource and technology development implications of carrying a suite of instruments on XEUS is thus the first step towards the successful implementation of XEUS.
Published: 18 April 2007
The Kelvin-Helmholtz instability (KHI) on the boundary of a flow channel in the Earth's plasma sheet is investigated using Cluster and Double Star TC1 data. It is shown that when Cluster moves into the flow channel the magnetometer measures strong oscillations of the magnetic field, that increase as the spacecraft move further into the flow channel. These waves are identified as Kelvin Helmholtz waves. DoubleStar TC1, closer to the Earth, also observes these waves when entering the flow channel but at larger amplitude and with only little flow. The increase in wave amplitude agrees with the KHI wave growth. It is argued that the development of the KHI can play a major rôle in flow braking in the magnetotail, which is an important aspect of magnetotail dynamics. The large amount of kinetic energy released by a reconnection event or bursty bulk flow gets converted to other kinds of energy such that in the near Earth region the flow is stopped.
Published: 20 May 2007
We present a comprehensive mass reconstruction of the rich galaxy cluster Cl 0024+17 at z ~ 0.4 from ACS data, unifying both strong- and weak-lensing constraints. The weak-lensing signal from a dense distribution of background galaxies (~120 arcmin-2) across the cluster enables the derivation of a high-resolution parameter-free mass map. The strongly lensed objects tightly constrain the mass structure of the cluster inner region on an absolute scale, breaking the mass-sheet degeneracy. The mass reconstruction of Cl 0024+17 obtained in such a way is remarkable. It reveals a ringlike dark matter substructure at r ~ 75" surrounding a soft, dense core at r <= 50". We interpret this peculiar substructure as the result of a high-speed line-of-sight collision of two massive clusters ~1-2 Gyr ago. Such an event is also indicated by the cluster velocity distribution. Our numerical simulation with purely collisionless particles demonstrates that such density ripples can arise by radially expanding, decelerating particles that originally comprised the precollision cores. Cl 0024+17 can be likened to the bullet cluster 1E 0657-56, but viewed along the collision axis at a much later epoch. In addition, we show that the long-standing mass discrepancy for Cl 0024+17 between X-ray and lensing can be resolved by treating the cluster X-ray emission as coming from a superposition of two X-ray systems. The cluster's unusual X-ray surface brightness profile that requires a two isothermal sphere description supports this hypothesis.
Published: 16 May 2007
ESA's hugely successful Science Programme is facing flat budgets for the foreseeable future. The resources will be insufficient to satisfy all of the science community's wishes for new missions. As a result, the Science Programme Review Team (SPRT) was established to recommend ways for the Programme to meet its obligations to current and approved missions and to support new projects to the greatest extent possible.
Published: 16 May 2007
This paper describes some unanticipated effects of the normal modes of the Sun on engineering and scientific systems. We begin with historical, scientific, and statistical background, then present evidence for the effects of solar modes on various systems. Engineering evidence for these modes was first noticed in an investigation of communications satellite failures and second in a study of excessive dropped calls in cellular phone systems. The paper also includes several sections on multitaper estimates of spectra, canonical coherences, robust, and cyclostationary variants of multitapering, and related statistical techniques used to separate the various components of this complex system. In our attempt to understand this unexpected source of problems, we have found that solar modes are detectable in the interplanetary magnetic fields and energetic particles at the Ulysses spacecraft, five astronomical units from the Earth. These modes couple into the magnetosphere, the ionosphere, the geomagnetic field, and atmospheric pressure. Estimates of the power spectrum of data from solar radio telescopes and induced voltages on ocean cables show what appear to be solar modes at both lower and higher frequencies than the optically measured solar p-modes. Most surprisingly, these modes are easily detected in seismic data, where they literally shake the Earth.
Published: 16 May 2007
Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.
Published: 12 May 2007
We examine Cluster observations of a reconnection event at xGSM=-15.7 RE in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in Bz, which are shown to be the Hall signature tilted in the yz plane with the current sheet.
Published: 09 May 2007
Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF) pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 RE, the azimuthal wave number m~30, temporal evolution, and energy transport in the detected ULF pulsations.
Published: 09 May 2007
19-Sep-2020 03:22 UT

ShortUrl Portlet

Shortcut URL