ESA Science & Technology - Publication Archive
Publication archive
Publication archive
Open access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
--- Remainder of abstract truncated due to character limitations ---
Titan's polar surface is dotted with hundreds of lacustrine depressions. Based on the hypothesis that they are karstic in origin, we aim at determining the efficiency of surface dissolution as a landshaping process on Titan, in a comparative planetology perspective with the Earth as reference. Our approach is based on the calculation of solutional denudation rates and allow inference of formation timescales for topographic depressions developed by chemical erosion on both planetary bodies. The model depends on the solubility of solids in liquids, the density of solids and liquids, and the average annual net rainfall rates. We compute and compare the denudation rates of pure solid organics in liquid hydrocarbons and of minerals in liquid water over Titan and Earth timescales. We then investigate the denudation rates of a superficial organic layer in liquid methane over one Titan year. At this timescale, such a layer on Titan would behave like salts or carbonates on Earth depending on its composition, which means that dissolution processes would likely occur but would be 30 times slower on Titan compared to the Earth due to the seasonality of precipitation. Assuming an average depth of 100 m for Titan's lacustrine depressions, these could have developed in a few tens of millions of years at polar latitudes higher than 70°N and S, and a few hundreds of million years at lower polar latitudes. The ages determined are consistent with the youth of the surface (<1 Gyr) and the repartition of dissolution-related landforms on Titan.
The internal ocean of Enceladus can be expected to present conditions favorable to the trapping of volatiles in clathrates. This process could influence the eventual composition of the ocean and therefore of the plumes emitted by the south polar region. Here we used a statistical thermodynamic model to assess which species detected in the plumes by the Cassini-INMS experiment are trapped in clathrates. We treated Enceladus' internal ocean as a terrestrial subglacial lake with a mixture of dissolved volatiles indicated by plume gas measurements. We find that the conditions for clathrate formation are met in this ocean, except above 20 km or in hypothetical hot spots. The formation of multiple guest clathrates depletes methane below plume levels, suggesting that clathrates eventually dissociate (releasing methane) in the fissure that connects the ocean to the surface or that another mechanism (such as hydrothermal reactions) is compensating by adding methane into the ocean.
Final edit of article will appear later.
On September 26th, 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 minutes before the closest approach, the Electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave (RPWS) instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low Energy Magnetospheric Measurement System (MIMI-LEMMS), indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (~ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.