Publication archive

Publication archive

The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission and ionize the hydrogen, leading to H3+ infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown.
Published: 13 November 2008
Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.
Published: 01 August 2008
Is it possible for life to exist on Enceladus, the tiny (500 km diameter) icy satellite of Saturn? The Cassini mission found giant gaseous plumes erupting from a tectonically active and warm south polar region. One highly publicized interpretation is that liquid water is present, possibly within tens of meters of the surface, or possibly only at depths of tens of kilometers. An antithetical interpretation is that Enceladus is frigid, stiff, thoroughly solid and composed of ice with interstitial gases to great depths. However, liquid water is just one of the three environmental conditions that are generally thought to be prerequisites for life. There must also be access to the elements out of which complex molecular structures can be constructed--mainly C, H, O, N, S, and--as well as an energy source that can drive metabolism. We examine the range of possible environments on Enceladus that are consistent with the observations in terms of their implications for harboring life.
Published: 14 June 2008
Observations of oscillations of temperature and wind in planetary atmospheres provide a means of generalizing models for atmospheric dynamics in a diverse set of planets in the Solar System and elsewhere. An equatorial oscillation similar to one in the Earth's atmosphere has been discovered in Jupiter. Here we report the existence of similar oscillations in Saturn's atmosphere, from an analysis of over two decades of spatially resolved observations of its 7.8-micron methane and 12.2-micron ethane stratospheric emissions, where we compare zonal-mean stratospheric brightness temperatures at planetographic latitudes of 3.6° and 15.5° in both the northern and the southern hemispheres. These results support the interpretation of vertical and meridional variability of temperatures in Saturn's stratosphere as a manifestation of a wave phenomenon similar to that on the Earth and in Jupiter. The period of this oscillation is 14.8 +- 1.2 terrestrial years, roughly half of Saturn's year, suggesting the influence of seasonal forcing, as is the case with the Earth's semi-annual oscillation.
Published: 09 May 2008
The camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences. It also shares properties with the polar vortices on Venus, such as polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV's combination of properties is unique among vortices in the solar system
Published: 28 March 2008
Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of 0.36° per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.
Published: 21 March 2008
Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.
Published: 07 March 2008
One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn's moon Enceladus. The data imply considerably smaller velocities for the grains than for the vapour, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260 K are generally too low to support the measured particle fluxes. This in turn suggests liquid water below Enceladus' south pole.
Published: 07 February 2008
The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001. Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.
Published: 13 December 2007
In the outer regions of Saturn's main rings, strong tidal forces balance gravitational accretion processes. Thus, unusual phenomena may be expected there. The Cassini spacecraft has recently revealed the strange "flying saucer" shape of two small satellites, Pan and Atlas, located in this region, showing prominent equatorial ridges. The accretion of ring particles onto the equatorial surfaces of already-formed bodies embedded in the rings may explain the formation of the ridges. This ridge formation process is in good agreement with detailed Cassini images showing differences between rough polar and smooth equatorial terrains. We propose that Pan and Atlas ridges are kilometers-thick "ring-particle piles" formed after the satellites themselves and after the flattening of the rings but before the complete depletion of ring material from their surroundings.
Published: 07 December 2007
Cassini images of Saturn's small inner satellites (radii of less than 100 kilometers) have yielded their sizes, shapes, and in some cases, topographies and mean densities. This information and numerical N-body simulations of accretionary growth have provided clues to their internal structures and origins. The innermost ring-region satellites have likely grown to the maximum sizes possible by accreting material around a dense core about one-third to one-half the present size of the moon. The other small satellites outside the ring region either may be close to monolithic collisional shards, modified to varying degrees by accretion, or may have grown by accretion without the aid of a core. We derived viscosity values of 87 and 20 square centimeters per second, respectively, for the ring material surrounding ring-embedded Pan and Daphnis. These moons almost certainly opened their respective gaps and then grew to their present size early on, when the local ring environment was thicker than it is today.
Published: 07 December 2007
Titan's ionosphere contains a rich positive ion population including organic molecules. Here, using CAPS electron spectrometer data from sixteen Titan encounters, we reveal the existence of negative ions. These ions, with densities up to ~100 cm-3, are in mass groups of 10-30, 30-50, 50-80, 80-110, 110-200 and 200+ amu/charge. During one low encounter, negative ions with mass per charge as high as 10,000 amu/q are seen. Due to their unexpectedly high densities at ~950 km altitude, these negative ions must play a key role in the ion chemistry and they may be important in the formation of organic-rich aerosols (tholins) eventually falling to the surface.
Published: 28 November 2007
The ESA Huygens probe performed a successful Entry, Descent, and Landing (EDL) sequence through Titan's dense atmosphere on January 14, 2005. During all three phases, i.e., the supersonic entry phase, the descent phase, as well as the impact and post impact phases, the probe performed measurements that were used for the reconstruction of its entry and descent trajectory. We first discuss the datasets relevant to the entry and descent trajectory reconstruction. We then provide an overview of the reconstruction strategy, and show preliminary results of the reconstructed entry and descent trajectory, including both position and velocity.
Published: 02 May 2006
The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by 6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by 1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.
Published: 08 November 2007
The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 301 appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ~100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north.
Published: 01 November 2007
The low-frequency data collected with the antenna of the Permittivity, Wave and Altimetry experiment on board the Huygens Probe that landed on Titan on 14 January 2005 have been thoroughly analyzed considering different possible natural and artificial effects. Although a definite conclusion is still subject to the outcome of complementary inquiries, it results from our analysis that the observations can be explained, for the most part, in term of natural phenomena rather than being artifacts. Extremely-low frequency waves generated in the ionosphere of Titan, driven by the corotating Saturn's frozen plasma flow, are assumed to be the most likely source for the observation of the second eigenmode of a Schumann-like resonance at around 36 Hz in the moon-ionosphere cavity. This particular mode is thought to be enhanced with respect to other harmonics because of the particular location of the landing site with respect to that of the supposed sources. The power budget of the observed wave amplitude seems to be consistent with a rough model of the global current of the wake-ionosphere circuit. Broadband low-frequency noise events which are observed sporadically during the descent are probably due to shot noise on the antenna when the Probe is crossing aerosol clouds, an interpretation supported by post-flight ground tests. Contrary to the situation encountered on Earth, atmospheric lightning does not appear to be the source of a conventional Schumann resonance on Titan.
Published: 01 November 2007
Jets of material have been seen emanating from the south-polar terrain of Saturn's satellite Enceladus. Observations have shown that this region is anomalously warm, with the hottest measured temperatures coinciding with the four 'tiger stripe' fractures, named Alexandria, Cairo, Baghdad and Damascus, that straddle the region. Here we use Cassini images taken from a variety of viewing directions over two years to triangulate the source locations for the most prominent jets, and compare these with the infrared hotspot locations and the predictions from a recent model of tidally induced shear heating within the fractures. We find that the jets emanate from the four tiger stripes, with the strongest sources on Baghdad and Damascus. All the jets from each fracture seem to lie in the same nearly vertical plane. There is a strong spatial coincidence between our geographical sources and the locations of increased temperature revealed by the infrared experiment. Comparison with the shear heating model shows broad agreement; the exception is the prediction that Baghdad is the least active lineament, whereas we find it to be the most active. We predict that several new hotspots remain to be discovered by future thermal observations.
Published: 12 October 2007
Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.
Published: 12 May 2007
The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70° north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table.
Published: 04 January 2007
We report the observation of two stellar occultations by Titan on 14 November 2003, using stations in the Indian Ocean, southern Africa, Spain, and northern and southern Americas. These occultations probed altitudes between~550 and 250 km (~1 to 250 microbar) in Titan's upper stratosphere. The light curves reveal a sharp inversion layer near 515 ± 6 km altitude (1.5 microbar pressure level), where the temperature increases by 15 K in only 6 km. This layer is close to an inversion layer observed fourteen months later by the Huygens HASI instrument during the entry of the probe in Titan's atmosphere on 14 January 2005 [Fulchignoni et al., 2005]. Central flashes observed during the first occultation provide constraints on the zonal wind regime at 250 km, with a strong northern jet (~200 m s-1) around the latitude 55°N, wind velocities of ~150 m s-1 near the equator, and progressively weaker winds as more southern latitudes are probed. The haze distribution around Titan's limb at 250 km altitude is close to that predicted by the Global Circulation Model of Rannou et al. (2004) in the southern hemisphere, but a clearing north of 40°N is necessary to explain our data. This contrasts with Rannou et al.'s (2004) model, which predicts a very thick polar hood over Titan's northern polar regions. Simultaneous observations of the flashes at various wavelengths provide a dependence of tau ~ lambda-q , with q = 1.8 ± 0.5 between 0.51 and 2.2 micron for the tangential optical depth of the hazes at 250 km altitude.
Published: 18 November 2006
9-Mar-2021 10:00 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/p/x8O7Mm8