Asset Publisher

Early <sup>56</sup>Ni decay gamma-rays from SN2014J suggest an unusual explosion

Early 56Ni decay gamma-rays from SN2014J suggest an unusual explosion

Publication date: 01 August 2014

Authors: Diehl, R., et al.

Journal: Science Express
Year: 2014

Copyright: AAAS

Type-Ia supernovae result from binary systems that include a carbon-oxygen white dwarf, and these thermonuclear explosions typically produce 0.5 MSun of radioactive 56Ni. The 56Ni is commonly believed to be buried deeply in the expanding supernova cloud. Surprisingly, in SN2014J we detected the lines at 158 and 812 keV from 56Ni decay (τ~8.8 days) earlier than the expected several-week time scale, only ~20 days after the explosion, and with flux levels corresponding to roughly 10% of the total expected amount of 56Ni. Some mechanism must break the spherical symmetry of the supernova, and at the same time create a major amount of 56Ni at the outskirts. A plausible explanation is that a belt of helium from the companion star is accreted by the white dwarf, where this material explodes and then triggers the supernova event.

Link to publication
Last Update: Sep 1, 2019 8:38:17 AM
29-May-2020 10:51 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/84yaxnA

Images And Videos

Related Publications

Related Links

Documentation