Asset Publisher

In situ observations of waves in Venus's polar lower thermosphere with Venus Express aerobraking

In situ observations of waves in Venus's polar lower thermosphere with Venus Express aerobraking

Publication date: 12 April 2016

Authors: Müller-Wodarg, I., et al.

Journal: Nature Physics
Year: 2016

Copyright: Nature Publishing Group

Published online 11 April 2016

Waves are ubiquitous phenomena found in oceans and atmospheres alike. From the earliest formal studies of waves in the Earth's atmosphere to more recent studies on other planets, waves have been shown to play a key role in shaping atmospheric bulk structure, dynamics and variability. Yet, waves are difficult to characterize as they ideally require in situ measurements of atmospheric properties that are difficult to obtain away from Earth. Thus, we have incomplete knowledge of atmospheric waves on planets other than our own, and we are thereby limited in our ability to understand and predict planetary atmospheres. Here we report the first ever in situ observations of atmospheric waves in Venus's thermosphere (130–140 km) at high latitudes (71.5°–79.0°). These measurements were made by the Venus Express Atmospheric Drag Experiment (VExADE) during aerobraking from 24 June to 11 July 2014. As the spacecraft flew through Venus's atmosphere, deceleration by atmospheric drag was sufficient to obtain from accelerometer readings a total of 18 vertical density profiles. We infer an average temperature of T = 114 ± 23 K and find horizontal wave-like density perturbations and mean temperatures being modulated at a quasi-5-day period.

Link to publication
Last Update: Sep 1, 2019 8:28:39 AM
11-Aug-2020 04:03 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/84y0DJA

Related Publications

Related Links

Documentation