Archive intro text - publications

Rosetta Publications

For all publications related to the Rosetta mission, please include the following acknowledgement:

Rosetta is an ESA mission with contributions from its Member States and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI.

For papers using Rosetta mission archive data provided by the PSA ( or PDS ( please acknowledge the Principal Investigator(s) as well as the ESA Planetary Science Archive and NASA PDS Planetary Data System.

To refer to this page you can use the following url:

A list of Rosetta publications is maintained at the ADS library by the Project Scientist; ADS classic version; ADS Bumblebee version.

Research articles and reports from the Science journal special issue, Catching a comet, in which the first results from the Rosetta orbiter instruments are reported are available (free access) here.

Research articles and reports from the Science journal special issue on Philae's first look are available (free access) here.

A special issue of Astronomy & Astrophysics on Rosetta mission results pre-perihelion was published in November 2015. It is available here.

A special issue of Monthly Notices of the Royal Astronomical Society resulting from The ESLAB 50 Symposium - spacecraft at comets from 1P/Halley to 67P/Churyumov-Gerasimenko was compiled in Autumn 2016. It is available here.

A second special issue of Monthly Notices of the Royal Astronomical Society resulting from the conference Comets: A new vision after Rosetta and Philae was compiled in Spring/Summer 2017. It is available here.

A list of Rosetta-related theses which have been prepared can be found here.

Publication archive

Publication archive

Bilobate comets—small icy bodies with two distinct lobes—are a common configuration among comets, but the factors shaping these bodies are largely unknown. Cometary nuclei, the solid centres of comets, erode by ice sublimation when they are sufficiently close to the Sun, but the importance of a comet's internal structure on its erosion is unclear. Here we present three-dimensional analyses of images from the Rosetta mission to illuminate the process that shaped the Jupiter-family bilobate comet 67P/Churyumov–Gerasimenko over billions of years. We show that the comet's surface and interior exhibit shear-fracture and fault networks, on spatial scales of tens to hundreds of metres. Fractures propagate up to 500 m below the surface through a mechanically homogeneous material. Through fracture network analysis and stress modelling, we show that shear deformation generates fracture networks that control mechani-cal surface erosion, particularly in the strongly marked neck trough of 67P/Churyumov–Gerasimenko, exposing its interior. We conclude that shear deformation shapes and structures the surface and interior of bilobate comets, particularly in the outer Solar System where water ice sublimation is negligible.
Published: 18 February 2019
The bow shock is the first boundary the solar wind encounters as it approaches planets or comets. The Rosetta spacecraft was able to observe the formation of a bow shock by following comet 67P/Churyumov–Gerasimenko toward the Sun, through perihelion, and back outward again. The spacecraft crossed the newly formed bow shock several times during two periods a few months before and after perihelion; it observed an increase in magnetic field magnitude and oscillation amplitude, electron and proton heating at the shock, and the diminution of the solar wind further downstream. Rosetta observed a cometary bow shock in its infancy, a stage in its development not previously accessible to in situ measurements at comets and planets.
Published: 06 November 2018
On 2016 July 03, several instruments onboard ESA's Rosetta spacecraft detected signs of an outburst event on comet 67P, at a heliocentric distance of 3.32 au from the Sun, outbound from perihelion. We here report on the inferred properties of the ejected dust and the surface change at the site of the outburst. The activity coincided with the local sunrise and continued over a time interval of 14–68 min. It left a 10-m-sized icy patch on the surface. The ejected material comprised refractory grains of several hundred microns in size, and sub-micron-sized water ice grains. The high dust mass production rate is incompatible with the free sublimation of crystalline water ice under solar illumination as the only acceleration process. Additional energy stored near the surface must have increased the gas density. We suggest a pressurized sub-surface gas reservoir, or the crystallization of amorphous water ice as possible causes.
Published: 26 October 2017
The origin of cometary matter and the potential contribution of comets to inner-planet atmospheres are long-standing problems. During a series of dedicated low-altitude orbits, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) on the Rosetta spacecraft analyzed the isotopes of xenon in the coma of comet 67P/Churyumov-Gerasimenko. The xenon isotopic composition shows deficits in heavy xenon isotopes and matches that of a primordial atmospheric component. The present-day Earth atmosphere contains 22 ± 5% cometary xenon, in addition to chondritic (or solar) xenon.
Published: 10 June 2017
Context. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) was designed to measure the composition of the gas in the coma of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s Rosetta mission. In addition to the volatiles, ROSINA measured refractories sputtered off the comet by the interaction of solar wind protons with the surface of the comet. Aims. The origin of different solar system materials is still heavily debated. Isotopic ratios can be used to distinguish between different reservoirs and investigate processes occurring during the formation of the solar system. Methods. ROSINA consisted of two mass spectrometers and a pressure sensor. In the ROSINA Double Focusing Mass Spectrometer (DFMS), the neutral gas of cometary origin was ionized and then deflected in an electric and a magnetic field that separated the ions based on their mass-to-charge ratio. The DFMS had a high mass resolution, dynamic range, and sensitivity that allowed detection of rare species and the known major volatiles. Results. We measured the relative abundance of all three stable silicon isotopes with the ROSINA instrument on board the Rosetta spacecraft. Furthermore, we measured 13C/12C in C2H4, C2H5, and CO. The DFMS in situ measurements indicate that the average silicon isotopic composition shows depletion in the heavy isotopes 29Si and 30Si with respect to 28Si and solar abundances, while 13C to 12C is analytically indistinguishable from bulk planetary and meteorite compositions. Although the origin of the deficiency of the heavy silicon isotopes cannot be explained unambiguously, we discuss mechanisms that could have contributed to the measured depletion of the isotopes 29Si and 30Si.
Published: 02 April 2017

Outbursts occur commonly on comets with different frequencies and scales. Despite multiple observations suggesting various triggering processes, the driving mechanism of such outbursts is still poorly understood. Landslides have been invoked to explain some outbursts on comet 103P/Hartley 2, although the process required a pre-existing dust layer on the verge of failure. The Rosetta mission observed several outbursts from its target comet 67P/Churyumov–Gerasimenko, which were attributed to dust generated by the crumbling of materials from collapsing cliffs. However, none of the aforementioned works included definitive evidence that landslides occur on comets. Amongst the many features observed by Rosetta on the nucleus of the comet, one peculiar fracture, 70 m long and 1 m wide, was identified on images obtained in September 2014 at the edge of a cliff named Aswan. On 10 July 2015, the Rosetta Navigation Camera captured a large plume of dust that could be traced back to an area encompassing the Aswan escarpment. Five days later, the OSIRIS camera observed a fresh, sharp and bright edge on the Aswan cliff. Here we report the first unambiguous link between an outburst and a cliff collapse on a comet. We establish a new dust-plume formation mechanism that does not necessarily require the breakup of pressurized crust or the presence of supervolatile material, as suggested by previous studies. Moreover, the collapse revealed the fresh icy interior of the comet, which is characterized by an albedo >0.4, and provided the opportunity to study how the crumbling wall settled down to form a new talus.

The evolution of the collapse of the Aswan cliff, observed by the OSIRIS Narrow Angle Camera (NAC) and the Rosetta Navigation camera (NavCam), is shown in Fig. 1.

[Remainder of abstract truncated due to character limitations]

Published: 21 March 2017
The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet's landscape. This suggests that most of the major landforms were created early in the comet's current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.
Published: 21 March 2017
This e-book (pdf, 33MB) is a collection of public contributions to celebrate the impact of the European Space Agency's Rosetta mission (2004-2016).

The contributions were shared on the Rosetta Legacy tumblr in September–October 2016.

This publication contains stories, images, videos, creations and experiences that convey the impact and meaning of the Rosetta Mission on the public. It provides a taste of Rosetta's legacy for fellow science communicators, scientists and engineers, educators, space enthusiasts – anyone who was fascinated by the mission.

Published: 22 December 2016

Published online 17 November 2016

Carbon dioxide is one of the most abundant species in cometary nuclei, but due to its high volatility CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area, located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80×60 m area is CO2 ice. This exposed ice was observed a short time after exiting from local winter; following the increased illumination, the CO2 ice completely disappeared over about three weeks. We estimate the mass of the sublimated CO2 ice and the depth of the surface eroded layer. The presence of CO2 ice is interpreted as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

Published: 17 November 2016
The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 m2) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
Published: 17 November 2016
Comet 67P/Churyumov-Gerasimenko currently spins with a period of about 12.4 hours, but its spin period used to be about 12.8 hours in 2002. It has been suggested that the difference is due to a period decrease caused by the comet's activity during its last close approach to the Sun in 2009. However, rather than the expected decrease in the spin period, recent navigation data from the Rosetta spacecraft has shown that the period has increased by 80.5 s as of Apr 13, 2015, as the comet approaches perihelion. Keller et al. estimate the water sublimation rate on each facet of a 3D model of the comet to calculate the global torque acting on the comet and infer changes in rotation rate. They show that the model qualitatively explains the modest increase in period observed in the first half of 2015 and predict that the rotation period should then decrease rapidly by about 13 minutes after perihelion. This will be directly tested by measurements in the next months.
Published: 30 September 2016

This press kit contains background information about the Rosetta mission. It has been prepared to accompany Rosetta's grand finale: the end of mission on 30 September 2016.

Rosetta at a glance
Fast Facts
Landing Rosetta on the comet
Collecting science until the very end
Rosetta's final resting place
Highlights from the Rosetta mission thus far
No ordinary spacecraft: the challenges of flying Rosetta
Meet Comet 67P/Churyumov-Gerasimenko
Comets - an introduction
Missions to comets - Rosetta in context
Appendices: Mission milestones; Distance, dates, and times for mission milestones; Selected images and videos; Online resources; Media contacts

To download the pdf file click on the image or on the link to publication below.

Published: 26 September 2016
During its two years mission around comet 67P/Churyumov-Gerasimenko, ESA's Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated to the activity of the nucleus, such as localized dust and gas jets. Here we report on series of more energetic transient events observed during the three months surrounding the comet's perihelion passage in August 2015. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotation. We identified 3 main dust plume morphologies associated to these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlates well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: Morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
Published: 23 September 2016
Published online 7 September 2016

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula – the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

Published: 08 September 2016
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov–Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.
Published: 02 August 2016
Published online 25 August 2016

On 19 Feb. 2016 nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in-situ gas, dust and plasma instruments, and one dust collector. At 9:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50% of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ~-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 minutes the Star Tracker camera detected fast particles (~25 m s−1) while 100 μm radius particles were detected by the GIADA dust instrument ∼1 hour later at a speed of ~6 m s−1. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.

Published: 26 August 2016

Aims. We provide a detailed morphological analysis of the Aswan site on comet 67P/Churyumov-Gerasimenko (67P). We derive the size-frequency distribution of boulders ≥2 m and correlate this distribution with the gravitational slopes for the first time on a comet. We perform the spectral analysis of this region to understand if possible surface variegation is related to the different surface textures observable on the different units.

Methods. We used two OSIRIS Narrow Angle Camera (NAC) image data sets acquired on September 19 and 22, 2014, with a scale of 0.5 m/px. Gravitational slopes derived from the 3D shape model of 67P were used to identify and interpret the different units of the site. By means of the high-resolution NAC data sets, boulders ≥2.0 m can be unambiguously identified and extracted using the software ArcGIS. Coregistered and photometrically corrected color cubes were used to perform the spectral analyses, and we retrieved the spectral properties of the Aswan units.

Results. The high-resolution morphological map of the Aswan site (0.68 km²) shows that this site is characterized by four different units: fine-particle deposits located on layered terrains, gravitational accumulation deposits, taluses, and the outcropping layered terrain. Multiple lineaments are identified on the Aswan cliff, such as fractures, exposed layered outcrops, niches, and terraces. Close to the terrace margin, several arched features observed in plan view suggest that the margin progressively retreats as a result of erosion. The size-frequency of boulders ≥2 m in the entire study area has a power-law index of -3.9 +0.2/-0.3 (1499 boulders ≥2 m/km²), suggesting that the Aswan site is mainly dominated by gravitational events triggered by sublimation and/or thermal insolation weathering causing regressive erosion.

[Remainder of abstract truncated due to character limitations]

Published: 29 July 2016
Published online 28 July 2016

Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model.

Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations.

Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics.

Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration.
[Remainder of abstract truncated]

Published: 29 July 2016
The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.
Published: 28 May 2016
Available online 16 March 2016

From August to November 2014 the Rosetta orbiter has performed an extensive observation campaign aimed at the characterization of 67P/CG nucleus properties and to the selection of the Philae landing site. The campaign led to the production of a global map of the illuminated portion of 67P/CG nucleus. During this prelanding phase the comet's heliocentric distance decreased from 3.62 to 2.93 AU while Rosetta was orbiting around the nucleus at distances between 100 to 10 km. VIRTIS-M, the Visible and InfraRed Thermal Imaging Spectrometer – Mapping channel (Coradini et al., [2007] Space Sci. Rev., 128, 529–559) onboard the orbiter, has acquired 0.25–5.1 µm hyperspectral data of the entire illuminated surface, e.g. the north hemisphere and the equatorial regions, with spatial resolution between 2.5 and 25 m/pixel. I/F spectra have been corrected for thermal emission removal in the 3.5–5.1 µm range and for surface's photometric response. The resulting reflectance spectra have been used to compute several Cometary Spectral Indicators (CSI): single scattering albedo at 0.55 µm, 0.5–0.8 µm and 1.0–2.5 µm spectral slopes, 3.2 µm organic material and 2.0 µm water ice band parameters (center, depth) with the aim to map their spatial distribution on the surface and to study their temporal variability as the nucleus moved towards the Sun. Indeed, throughout the investigated period, the nucleus surface shows a significant increase of the single scattering albedo along with a decrease of the 0.5–0.8 and 1.0–2.5 µm spectral slopes, indicating a flattening of the reflectance. We attribute the origin of this effect to the partial removal of the dust layer caused by the increased contribution of water sublimation to the gaseous activity as comet crossed the frost-line.
--- Remainder of abstract truncated due to character limitations ---

Published: 16 March 2016
20-Sep-2019 15:58 UT

ShortUrl Portlet

Shortcut URL