Robust Pressure Regulation System for the SMART-1 Electric Propulsion Sub-System
Publication date: 12 July 2004
Authors: Koppel, C.R., et al.
Year: 2004
AIAA-2004-3977: Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, 11-14 July 2004
Onboard the ESA SMART-1 spacecraft, (Small Mission for Advanced Research in Technology), the Xenon feeding system operates since the September 30th 2003. EPS Contractor, ESTEC, and EPS manufacturer, SNECMA MOTEURS, present in detail the major performances of the Pressure Regulation System, with a comparison to the ground tests results. The PPS® -1350 Hall Effect plasma Thruster needs a regulated xenon pressure as input of the flow controller. Such pressure is delivered and controlled by two pieces of hardware, the "Bang-Bang Pressure Regulation Unit" and the "Pressure Regulation Electronic Card". The concept is described as well as its main features: the robustness by design that cannot allow a direct communication between the high-pressure parts (the xenon tank) and the low-pressure parts (the thruster input). The paper highlights the possibility for various parameters to be tuned by telecommands in order to reach different performance levels of the pressure regulation. The real flexibility of the concept allows smoothing the pressure regulation. This paper describes the performances results of the pressure regulation in space environment compared to the ground tests results. It discusses also the advantage of the regulation tuning capability during the first flight phase. This new features of primary electric propulsion subsystem demonstrates its robustness and flexibility toward thruster initial requested tuning to keep the thruster loop fine pressure regulation in an adequate range.
Link to publication